" SECOND EDITION s

roreword BY Richard Lemarchand

CRC Press

Taylor & Francis Group

SECOND EDITION

Game Engine
Architecture

This page intentionally left blank

SECOND EDITION

Game Engine
Architecture

Jason Gregory

Lead Programmer, Naughty Dog Inc.

roreworp By Richard Lemarchand

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140624

International Standard Book Number-13: 978-1-4665-6006-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedicated to
Trina, Evan and Quinn Gregory,

in memory of our heroes,
Joyce Osterhus, Kenneth Gregory and Erica Gregory.

This page intentionally left blank

Foreword to the First Edition

Foreword to the Second Edition

Preface to the First Edition

Preface to the Second Edition

Acknowledgements

I Foundations

1 Introduction

11

12
13
14
15

Structure of a Typical Game Team
What Is a Game?

What Is a Game Engine?

Engine Differences Across Genres
Game Engine Survey

Vii

Contents

Xiii
XVii
XXi

XXiii

XXV

Viii

CONTENTS

1.6 Runtime Engine Architecture 32
1.7 Tools and the Asset Pipeline 54
Tools of the Trade 63
21 Version Control 63
22 Microsoft Visual Studio 73
23 Profiling Tools 9l
24 Memory Leak and Corruption Detection 93
25 Other Tools 94
Fundamentals of Software Engineering for Games 97
31 C++ Review and Best Practices 97
32 Data, Code and Memory 112
33 Catching and Handling Errors 144
34 Pipelines, Caches and Optimization 152
3D Math for Games 165
41 Solving 3D Problems in 2D 165
42 Points and Vectors 166
43 Matrices 18I
44 Quaternions 200
45 Comparison of Rotational Representations 209
46 Other Useful Mathematical Objects 213
47 Hardware-Accelerated SIMD Math 218
48 Random Number Generation 227

Low-Level Engine Systems 229
Engine Support Systems 231
51 Subsystem Start-Up and Shut-Down 231
52 Memory Management 239
53 Containers 254
54 Strings 274

55 Engine Configuration 290

CONTENTS

6 Resources and the File System

6.l
6.2

7 The Game Loop and Real-Time Simulation

71

72
73
74
7.5
7.6
7.7

File System
The Resource Manager

The Rendering Loop

The Game Loop

Game Loop Architectural Styles
Abstract Timelines

Measuring and Dealing with Time
Multiprocessor Game Loops
Networked Multiplayer Game Loops

8 Human Interface Devices (HID)

81

82
83
84
85
8.6

Types of Human Interface Devices
Interfacing with a HID

Types of Inputs

Types of Outputs

Game Engine HID Systems

Human Interface Devices in Practice

9 Tools for Debugging and Development

9l

92
93
94
95
9.6
97
9.8
99

Logging and Tracing

Debug Drawing Facilities

In-Game Menus

In-Game Console

Debug Cameras and Pausing the Game
Cheats

Screenshots and Movie Capture
In-Game Profiling

In-Game Memory Stats and Leak Detection

[l Graphics, Motion and Sound

10 The Rendering Engine

297

298
308

339

339
340
343
346
348
36l
375

38l

38l
383
385

391
392
409

411

411
416
423
426
427
427
428
429
436

441
443

CONTENTS

10.1

10.2
103
104
10.5

Foundations of Depth-Buffered Triangle Rasterization

The Rendering Pipeline

Advanced Lighting and Global lllumination
Visual Effects and Overlays

Further Reading

11 Animation Systems

111
1.2
1.3
114
1.5
1.6
1.7
1.8
1.9
11.10
1.1
1112

Types of Character Animation
Skeletons

Poses

Clips

Skinning and Matrix Palette Generation
Animation Blending
Post-Processing

Compression Techniques
Animation System Architecture
The Animation Pipeline

Action State Machines
Animation Controllers

Collision and Rigid Body Dynamics

121 Do You Want Physics in Your Game?
122 Collision/Physics Middleware

123 The Collision Detection System

124 Rigid Body Dynamics

125 Integrating a Physics Engine into Your Game
126 Advanced Physics Features

Audio

131 The Physics of Sound

132 The Mathematics of Sound

133 The Technology of Sound

134 Rendering Audio in 3D

13.5 Audio Engine Architecture

136 Game-Specific Audio Features

444
489
519
532
541

543

543
548

551
556
570
575
594
597
604
605
62l
646

647

648
653
655
684
722
740

743

744
756
774
786
806
828

CONTENTS

Xi

IV Gameplay 845
14 Introduction to Gameplay Systems 847
141 Anatomy of a Game World 848
142 Implementing Dynamic Elements: Game Objects 853
143 Data-Driven Game Engines 856
144 The Game World Editor 857
15 Runtime Gameplay Foundation Systems 869
151 Components of the Gameplay Foundation System 869
152 Runtime Object Model Architectures 873
153 World Chunk Data Formats 892
154 Loading and Streaming Game Worlds 899
155 Object References and World Queries 909
156 Updating Game Obijects in Real Time 916
15.7 Events and Message-Passing 933
158 Scripting 954
159 High-Level Game Flow 978
V Conclusion 979
16 You Mean There’s More? 98I
161 Some Engine Systems We Didn't Cover 98|
162 Gameplay Systems 982
Bibliography 987

Index 99]

This page intentionally left blank

Foreword to the First Edition

he very first video game was built entirely out of hardware, but rapid ad-

vancements in microprocessors have changed all that. These days, video
games are played on versatile PCs and specialized video game consoles that
use soft ware to make it possible to off er a tremendous variety of gaming
experiences. It’s been 50 years since those first primitive games, but the in-
dustry is still considered by many to be immature. It may be young, but when
you take a closer look, you will find that things have been developing rapidly.
Video games are now a multi-billion-dollar industry covering a wide range of
demographics.

Video games come in all shapes and sizes, falling into categories or
“genres” covering everything from solitaire to massively multiplayer online
role-playing games, and these games are played on virtually anything with a
microchip in it. These days, you can get games for your PC, your cell phone,
as well as a number of diff erent specialized gaming consoles—both handheld
and those that connect to your home TV. These specialized home consoles
tend to represent the cutt ing edge of gaming technology, and the pattern of
these platforms being released in cycles has come to be called console “gen-
erations.” The powerhouses of this latest generation are Microsoft’s Xbox 360
and Sony’s PlayStation 3, but the ever-present PC should never be overlooked,
and the extremely popular Nintendo Wii represents something new this time
around.

xiii

Xiv

Foreword to the First Edition

The recent explosion of downloadable and casual games has added even
more complexity to the diverse world of commercial video games. Even so,
big games are still big business. The incredible computing power available
on today’s complicated platforms has made room for increased complexity in
the software. Naturally, all this advanced soft ware has to be created by some-
one, and that has driven up the size of development teams—not to mention
development costs. As the industry matures, we’re always looking for better,
more efficient ways to build our products, and development teams have be-
gun compensating for the increased complexity by taking advantage of things
like reusable software and middleware.

With so many different styles of game on such a wide array of platforms,
there cannot be any single ideal software solution. However, certain patterns
have developed, and there is a vast menu of potential solutions out there. The
problem today is choosing the right solution to fit the needs of the particular
project. Going deeper, a development team must consider all the different
aspects of a project and how they fit together. It is rare to find any one software
package that perfectly suits every aspect of a new game design.

Those of us who are now veterans of the industry found ourselves pio-
neering unknown territory. Few programmers of our generation have Com-
puter Science degrees (Matt’s is in Aeronautical Engineering, and Jason’s is
in Systems Design Engineering), but these days many colleges are starting to
programs and degrees in video games. The students and developers of today
need a good place to turn to for solid game development information. For
pure high-end graphics, there are a lot of sources of very good information
from research to practical jewels of knowledge. However, these sources are
often not directly applicable to production game environments or suffer from
not having actual production-quality implementations. For the rest of game
development, there are so-called beginner books that so gloss over the details
and act as if they invented everything without giving references that they are
just not useful or often even accurate. Then there are high-end specialty books
for various niches like physics, collision, Al, etc. But these can be needlessly
obtuse or too high level to be understood by all, or the piecemeal approach just
doesn’t all fit together. Many are even so directly tied to a particular piece of
technology as to become rapidly dated as the hardware and software change.

Then there is the Internet, which is an excellent supplementary tool for
knowledge gathering. However, broken links, widely inaccurate data and
variable-to-poor quality often make it not useful at all unless you know ex-
actly what you are after.

Enter Jason Gregory, himself an industry veteran with experience at
Naughty Dog—one of the most highly regarded video game studios in the

Foreword to the First Edition

XV

world. While teaching a course in game programming at USC, Jason found
himself facing a shortage of textbooks covering the fundamentals of video-
game architecture. Luckily for the rest of us, he has taken it upon himself to
fill that gap.

What Jason has done is pull together production-quality knowledge ac-
tually used in shipped game projects and bring together the entire game-
development picture. His experience has allowed him to bring together not
only the ideas and techniques but also actual code samples and implementa-
tion examples to show you how the pieces come together to actually make a
game. The references and citations make it a great jumping-off point to dig
deeper into any particular aspect of the process. The concepts and techniques
are the actual ones we use to create games, and while the examples are often
grounded in a technology, they extend way beyond any particular engine or
APL

This is the kind of book we wanted when we were getting started, and we
think it will prove very instructive to people just starting out as well as those
with experience who would like some exposure to the larger context.

Jeff Lander
Matthew Whiting

This page intentionally left blank

Foreword to the Second Edition

ames and computing are deeply intertwined. From the advent of the

first digital computer game, Spacewar, in 1962, to the state-of-the-art
gaming systems of the present day, the procedural aspects of games dove-
tail perfectly with the logical and mathematical nature of computers. Digi-
tal games beckon us toward a future world where systems thinking and the
foundational literacies of interaction and programming promise a new era of
human invention, discovery and imagination. This future is a complex one—
we're all going to need good guidebooks.

Let’s cut to the chase: In my opinion, this book is the best of its kind,
and you're lucky to have found it. It covers the huge field of game engine
architecture in a succinct, clear way, and expertly balances the breadth and the
depth of its coverage, offering enough detail that even a beginner can easily
understand the concepts it presents. The author, Jason Gregory, is not only a
world expert in his field; he’s a working programmer with production-quality
knowledge and many shipped game projects under his belt. He works among
the game engineers of Naughty Dog, one of the foremost game studios in the
world, on what are widely regarded to be some of the best videogames ever
made. To cap things off, Jason is also an experienced educator, who has taught
in the top-ranked university game program in North America.

Xvil

Xvii

Foreword to the Second Edition

Why should you take my word for the fact that you're looking at a rare
gem of a book, and one that will become an essential part of your game de-
velopment reference library? Let me do my best to give you some confidence
in my claims.

I've worked as a professional game designer for all my adult life. For much
of that time I worked as a Lead Game Designer at Naughty Dog, the Sony-
owned studio that created the Crash Bandicoot and Jak and Daxter series of
games. It was at Naughty Dog that I first met Jason Gregory, who I've known
for a long time now, and it was there that he and I were honored to participate
in the creation of all three games in the hugely critically and commercially
successful Uncharted series. Jason would go on to work on The Last of Us, the
next of Naughty Dog’s enormously successful storytelling action games.

I got my start as a game designer at MicroProse in the UK, and before
joining Naughty Dog I worked at Crystal Dynamics where I helped to create
game series like Gex and Legacy of Kain: Soul Reaver. I learned an immense
amount during the eight amazing years that I worked at Naughty Dog, and I
have now joined the faculty of the Interactive Media and Games Division of
the School of Cinematic Arts at the University of Southern California, where
I teach in the USC Games program and design games as part of USC’s Game
Innovation Lab. The bonds between USC and Naughty Dog are strong; Jason
has also taught programming in the USC Games program, as part of USC’s
Viterbi School of Engineering.

When I first met Jason, he was newly arriving at Naughty Dog from our
neighbors at Electronic Arts, where he had done great work on the highly
technical and artistically driven field of game animation, among other things.
We were able to work together almost immediately. Along with the many
other complex tasks he took on, Jason helped to develop the scripting lan-
guage and proprietary authoring environment that my fellow game designers
and I would use to tie together elements of art, animation, audio, visual effects
and code into the set pieces that wowed our audience of Uncharted players.
This means that I have first-hand experience of how Jason can take complex
concepts and make them clear. The tools that he helped develop are the best
I've ever used, and I know from our other work together that he brings this
same technical horsepower and clarity of communication to every one of the
many game systems he has worked on in the course of his professional life, as
well as to this book.

Contemporary videogame development is a big subject. From design to
development, from triple-A to indie hit, from rendering to collision to tools
programming, there’s a lot to say about the interlocking sets of systems and
skills that go into making a game. The game-making tools that we now have

Foreword to the Second Edition

Xix

at our disposal are unparalleled in their power and complexity, and the many
detailed code samples and implementation examples in this book will help
you understand just how the pieces come together in a great game. By helping
you in this way, Jason’s book might just empower you to outstrip even the
most audacious dreams of history’s best game designers and developers.

This book is a survey, but not just of the surface; it also digs deeply enough
into each subject to give us a chance to understand everything it covers. In the
colorful language of my friend Ian Dallas, creative director at Giant Sparrow,
creators of The Unfinished Swan, and a person who swears by this book: It
gives us a chance “to eat a piece of the elephant”—to start to wrap our heads
around the “big picture” of a giant subject that could otherwise seem too vast
to begin to understand.

This is a great time to be approaching game software engineering. Schools
all around the world are offering high-quality programs staffed by experi-
enced game creators who bring a wealth of technical and artistic skill to bear
on their subject. The incredible renaissance that is taking place in games, due
in part to the influence of independent games and art games, is opening up
our world to new voices and new perspectives, all the while strengthening
the very healthy and innovative mainstream of computer, console and mobile
game development.

Our field is only going to become more interesting, more culturally im-
portant, in terms of entertainment, art and business, and more innovative, as
we head into the many exciting, uncharted futures of digital gaming. You
couldn’t ask for a better springboard than this book, or for a better, wiser
guide than Jason Gregory, as you begin what I hope will be a lifelong process
of learning about the fascinating world of game development.

Richard Lemarchand
14th November, 2013

This page intentionally left blank

Preface to the First Edition

W elcome to Game Engine Architecture. This book aims to present a com-
plete discussion of the major components that make up a typical com-
mercial game engine. Game programming is an immense topic, so we have a
lot of ground to cover. Nevertheless, I trust you'll find that the depth of our
discussions is sufficient to give you a solid understanding of both the theory
and the common practices employed within each of the engineering disci-
plines we'll cover. That said, this book is really just the beginning of a fasci-
nating and potentially lifelong journey. A wealth of information is available
on all aspects of game technology, and this text serves both as a foundation-
laying device and as a jumping-off point for further learning.

Our focus in this book will be on game engine technologies and architec-
ture. This means we’ll cover both the theory underlying the various subsys-
tems that comprise a commercial game engine and also the data structures,
algorithms and software interfaces that are typically used to implement them.
The line between the game engine and the game is rather blurry. We’ll fo-
cus primarily on the engine itself, including a host of low-level foundation
systems, the rendering engine, the collision system, the physics simulation,
character animation and an in-depth discussion of what I call the gameplay
foundation layer. This layer includes the game’s object model, world editor,
event system and scripting system. We’ll also touch on some aspects of game-
play programming, including player mechanics, cameras and Al. However,

XXi

XXii

Preface to the First Edition

by necessity, the scope of these discussions will be limited mainly to the ways
in which gameplay systems interface with the engine.

This book is intended to be used as a course text for a two- or three-course
college-level series in intermediate game programming. Of course, it can also
be used by amateur software engineers, hobbyists, self-taught game program-
mers and existing members of the game industry alike. Junior engineers can
use this text to solidify their understanding of game mathematics, engine ar-
chitecture and game technology. And some senior engineers who have de-
voted their careers to one particular specialty may benefit from the bigger
picture presented in these pages as well.

To get the most out of this book, you should have a working knowledge
of basic object-oriented programming concepts and at least some experience
programming in C++. Although a host of new and exciting languages are be-
ginning to take hold within the game industry, industrial-strength 3D game
engines are still written primarily in C or C++, and any serious game pro-
grammer needs to know C++. We'll review the basic tenets of object-oriented
programming in Chapter 3, and you will no doubt pick up a few new C++
tricks as you read this book, but a solid foundation in the C++ language is
best obtained from [41], [31] and [32]. If your C++ is a bit rusty, I recommend
you refer to these or similar books to refresh your knowledge as you read this
text. If you have no prior C++ experience, you may want to consider read-
ing at least the first few chapters of [41] and/or working through a few C++
tutorials online, before diving into this book.

The best way to learn computer programming of any kind is to actually
write some code. As you read through this book, I strongly encourage you
to select a few topic areas that are of particular interest to you and come up
with some projects for yourself in those areas. For example, if you find char-
acter animation interesting, you could start by installing OGRE and explor-
ing its skinned animation demo. Then you could try to implement some of
the animation blending techniques described in this book, using OGRE. Next
you might decide to implement a simple joypad-controlled animated charac-
ter that can run around on a flat plane. Once you have something relatively
simple working, expand upon it! Then move on to another area of game tech-
nology. Rinse and repeat. It doesn’t particularly matter what the projects are,
as long as you're practicing the art of game programming, not just reading
about it.

Game technology is a living, breathing thing that can never be entirely
captured within the pages of a book. As such, additional resources, errata, up-
dates, sample code and project ideas will be posted from time to time on this
book’s website at http://www.gameenginebook.com and on the book’s blog
at http://gameenginebook.blogspot.com. You can also follow me on Twitter

@jggregory.

Preface to the Second Edition

n this, the second edition of Game Engine Architecture, my goal was three-

fold. First, I wanted to update the book to include information on some
new and exciting topics, including that latest variant of the C++ program-
ming language, C++11, and the architecture of the eighth generation of gam-
ing consoles—the Xbox One and the PlayStation 4.

Second, I wanted to fill in some gaps in the content of the original book.
Most notably, I decided to include a brand new chapter on audio technology.
This decision was based in part on requests from you, my loyal and always
helpful readers. It was also based in part on the fact that, to my knowledge,
no book currently exists that covers the fundamentals of the physics, mathe-
matics and technology that go into the creation of a AAA game audio engine.
Audio plays a crucially important role in any great game, and it is my sincere
hope that the audio chapter in this book will help at least a little to open up
the field of game audio technology to a wider audience.

Third, I wanted to repair the various errata that were brought to my atten-
tion by my readers. Thank you! I hope you'll find that the mistakes you found
have all been fixed—and replaced by a whole new batch of mistakes that you
can tell me about for the third edition!

Of course, as I've said before, the field of game engine programming is
almost unimaginably broad and deep. There’s no way to cover every topic

XXiii

XXiv

Preface to the Second Edition

in one book. As such, the primary purpose of this book remains to serve as
an awareness-building tool and a jumping-off point for further learning. I
hope you find this edition helpful on your journey through the fascinating
and multifaceted landscape of game engine architecture.

Acknowledgements

No book is created in a vacuum, and this one is certainly no exception. This
book—and its second edition, which you hold in your hands now—would
not have been possible without the help of my family, friends and colleagues
in the game industry, and I'd like to extend warm thanks to everyone who
helped me to bring this project to fruition.

Of course, the ones most impacted by a project like this are invariably the
author’s family. So I'd like to start by offering for a second time a special thank-
you to my wife Trina. She was a pillar of strength during the writing of the
original book, and this time around she was as supportive and invaluably
helpful as ever. While I'm busy tapping away on my keyboard, Trina is always
there to take care of our two boys, Evan (now age 10) and Quinn (age 7), day
after day and night after night, often forgoing her own plans, doing my chores
as well as her own (more often than I'd like to admit), and always giving me
kind words of encouragement when I needed them the most. I'd also like to
thank my sons, Evan and Quinn, for being patient with me, especially when
my writing schedule interfered with their burning desires to download the
latest Minecraft mod or Gmod add-on, and for offering me unconditional love
and affection despite their quite understandable frustration with my lack of
availability.

I'would also like to extend special thanks to my editors for the first edition,
Matt Whiting and Jeff Lander. Their insightful, targeted and timely feedback
was always right on the money, and their vast experience in the game industry
helped to give me confidence that the information presented in these pages
is as accurate and up-to-date as humanly possible. Matt and Jeff were both
a pleasure to work with, and I am honored to have had the opportunity to
collaborate with such consummate professionals on this project. 1'd like to
thank Jeff in particular for putting me in touch with Alice Peters and helping
me to get this project off the ground in the first place.

A number of my colleagues at Naughty Dog also contributed to this book,
either by providing feedback or by helping me with the structure and topic
content of one of the chapters. I'd like to thank Marshall Robin and Carlos

Preface to the Second Edition

XXV

Gonzalez-Ochoa for their guidance and tutelage as I wrote the rendering chap-
ter, and Pal-Kristian Engstad for his excellent and insightful feedback on the
content of that chapter. My thanks go to Christian Gyrling for his feedback
on various sections of the book, including the chapter on animation (which
is one of his many specialties). And I want to extend a special thank-you to
Jonathan Lanier, Naughty Dog’s resident senior audio programmer extraor-
dinaire, for providing me with a great deal of the raw information you’ll find
in the new audio chapter, for always being available to chat when I had ques-
tions, and for providing laser-focused and invaluable feedback after reading
the initial draft. My thanks also go to the entire Naughty Dog engineering
team for creating all of the incredible game engine systems that I highlight in
this book.

My thanks go to Keith Schaeffer of Electronic Arts for providing me with
much of the raw content regarding the impact of physics on a game, found in
Section 12.1. I'd also like to extend a warm thank-you to Paul Keet, who was
a lead engineer on the Medal of Honor franchise during my time at Electronic
Arts, and Steve Ranck, the lead engineer on the Hydro Thunder project at Mid-
way San Diego, for their mentorship and guidance over the years. While they
did not contribute to the book directly, they did help to make me the engineer
that I am today, and their influences are echoed on virtually every page in one
way or another.

This book arose out of the notes I developed for a course entitled ITP-
485: Programming Game Engines, which I taught under the auspices of the
Information Technology Program at the University of Southern California for
approximately four years. I would like to thank Dr. Anthony Borquez, the
director of the ITP department at the time, for hiring me to develop the ITP-
485 course curriculum in the first place.

My extended family and friends also deserve thanks, in part for their
unwavering encouragement, and in part for entertaining my wife and our
two boys on so many occasions while I was working. I'd like to thank my
sister- and brother-in-law, Tracy Lee and Doug Provins, my cousin-in-law
Matt Glenn, and all of our incredible friends, including Kim and Drew Clark,

Sherilyn and Jim Kritzer, Anne and Michael Scherer and Kim and Mike Warner.

My father Kenneth Gregory wrote a book on investing in the stock market
when I was a teenager, and in doing so he inspired me to write this book. For
this and so much more, I am eternally grateful to him. I'd also like to thank my
mother Erica Gregory, in part for her insistence that I embark on this project,
and in part for spending countless hours with me when I was a child, beating
the art of writing into my cranium—I owe my writing skills, my work ethic,
and my rather twisted sense of humor entirely to her!

XXVi

Preface to the Second Edition

I'd like to thank Alice Peters and Kevin Jackson-Mead, as well as the entire
A K Peters staff, for their Herculean efforts in publishing the first edition of
this book. Since that time, A K Peters has been acquired by the CRC Press, the
principal science and technology book division of the Taylor & Francis Group.
I'd like to wish Alice and Klaus Peters all the best in their future endeavors.
I'd also like to thank Rick Adams and Jennifer Ahringer of Taylor & Francis for
their patient support and help throughout the process of creating the second
edition of Game Engine Architecture, and Jonathan Pennell for his work on the
cover for the second edition.

Since the first edition was published, I was thrilled to learn that it had
been translated into the Japanese language. I would like to extend my sincere
thanks to Kazuhisa Minato and his team at Namco Bandai Games for taking
on this incredibly daunting task, and doing such a great job with it. I'd also
like to thank the folks at Softbank Creative, Inc. for publishing the Japanese
version of the book. I have also learned that the book has been recently trans-
lated into Chinese. I would like to thank Milo Yip for his hard work and
dedication to this project.

Many of my readers took the time to send me feedback and alert me to er-
rors in the first edition, and for that I'd like to extend my sincere thanks to all
of you who contributed. I'd like to give a special thank-you to Milo Yip and
Joe Conley for going above and beyond the call of duty in this regard. Both of
you provided me with many-page documents chock full of errata and incred-
ibly valuable and insightful suggestions. I've tried my best to incorporate all
of this feedback into the second edition. Please keep it coming!

Jason Gregory
September 2013

Part |
Foundations

This page intentionally left blank

]
Introduction

hen I got my first game console in 1979—a way-cool Intellivision sys-

tem by Mattel—the term “game engine” did not exist. Back then, video
and arcade games were considered by most adults to be nothing more than
toys, and the software that made them tick was highly specialized to both
the game in question and the hardware on which it ran. Today, games are a
multi-billion-dollar mainstream industry rivaling Hollywood in size and pop-
ularity. And the software that drives these now-ubiquitous three-dimensional
worlds—game engines like id Software’s Quake and Doom engines, Epic
Games’ Unreal Engine 4, Valve’s Source engine and the Unity game engine—
have become fully featured reusable software development kits that can be
licensed and used to build almost any game imaginable.

While game engines vary widely in the details of their architecture and im-
plementation, recognizable coarse-grained patterns are emerging across both
publicly licensed game engines and their proprietary in-house counterparts.
Virtually all game engines contain a familiar set of core components, including
the rendering engine, the collision and physics engine, the animation system,
the audio system, the game world object model, the artificial intelligence sys-
tem and so on. Within each of these components, a relatively small number of
semi-standard design alternatives are also beginning to emerge.

There are a great many books that cover individual game engine subsys-
tems, such as three-dimensional graphics, in exhaustive detail. Other books

1. Introduction

cobble together valuable tips and tricks across a wide variety of game tech-
nology areas. However, I have been unable to find a book that provides its
reader with a reasonably complete picture of the entire gamut of components
that make up a modern game engine. The goal of this book, then, is to take
the reader on a guided hands-on tour of the vast and complex landscape of
game engine architecture.

In this book you will learn:

¢ how real industrial-strength production game engines are architected;
¢ how game development teams are organized and work in the real world;

¢ which major subsystems and design patterns appear again and again in
virtually every game engine;

* the typical requirements for each major subsystem;

¢ which subsystems are genre- or game-agnostic, and which ones are typ-
ically designed explicitly for a specific genre or game; and

¢ where the engine normally ends and the game begins.

We'll also get a first-hand glimpse into the inner workings of some popular
game engines, such as Quake and Unreal, and some well-known middleware
packages, such as the Havok Physics library, the OGRE rendering engine and
Rad Game Tools” Granny 3D animation and geometry management toolkit.

Before we get started, we'll review some techniques and tools for large-
scale software engineering in a game engine context, including;:

¢ the difference between logical and physical software architecture;
* configuration management, revision control and build systems; and

* some tips and tricks for dealing with one of the common development
environments for C and C++, Microsoft Visual Studio.

In this book I assume that you have a solid understanding of C++ (the
language of choice among most modern game developers) and that you un-
derstand basic software engineering principles. I also assume you have some
exposure to linear algebra, three-dimensional vector and matrix math and
trigonometry (although we’ll review the core concepts in Chapter 4). Ideally,
you should have some prior exposure to the basic concepts of real time and
event-driven programming. But never fear—I will review these topics briefly,
and I'll also point you in the right direction if you feel you need to hone your
skills further before we embark.

L1 Structure of a Typical Game Team

1.1 Structure of a Typical Game Team

Before we delve into the structure of a typical game engine, let’s first take a
brief look at the structure of a typical game development team. Game stu-
dios are usually composed of five basic disciplines: engineers, artists, game
designers, producers and other management and support staff (marketing,
legal, information technology/technical support, administrative, etc.). Each
discipline can be divided into various subdisciplines. We’ll take a brief look
at each below.

1.I.1 Engineers

The engineers design and implement the software that makes the game, and
the tools, work. Engineers are often categorized into two basic groups: runtime
programmers (who work on the engine and the game itself) and tools pro-
grammers (wWho work on the offline tools that allow the rest of the develop-
ment team to work effectively). On both sides of the runtime/tools line, engi-
neers have various specialties. Some engineers focus their careers on a single
engine system, such as rendering, artificial intelligence, audio or collision and
physics. Some focus on gameplay programming and scripting, while others
prefer to work at the systems level and not get too involved in how the game
actually plays. Some engineers are generalists—jacks of all trades who can
jump around and tackle whatever problems might arise during development.

Senior engineers are sometimes asked to take on a technical leadership
role. Lead engineers usually still design and write code, but they also help to
manage the team’s schedule, make decisions regarding the overall technical
direction of the project, and sometimes also directly manage people from a
human resources perspective.

Some companies also have one or more technical directors (TD), whose job
it is to oversee one or more projects from a high level, ensuring that the teams
are aware of potential technical challenges, upcoming industry developments,
new technologies and so on. The highest engineering-related position at a
game studio is the chief technical officer (CTO), if the studio has one. The
CTO’sjob is to serve as a sort of technical director for the entire studio, as well
as serving a key executive role in the company.

1.1.2 Artists

As we say in the game industry, “Content is king.” The artists produce all of
the visual and audio content in the game, and the quality of their work can
literally make or break a game. Artists come in all sorts of flavors:

1. Introduction

® Concept artists produce sketches and paintings that provide the team
with a vision of what the final game will look like. They start their
work early in the concept phase of development, but usually continue
to provide visual direction throughout a project’s life cycle. It is com-
mon for screenshots taken from a shipping game to bear an uncanny
resemblance to the concept art.

e 3D modelers produce the three-dimensional geometry for everything in
the virtual game world. This discipline is typically divided into two
subdisciplines: foreground modelers and background modelers. The
former create objects, characters, vehicles, weapons and the other objects
that populate the game world, while the latter build the world’s static
background geometry (terrain, buildings, bridges, etc.).

o Texture artists create the two-dimensional images known as textures,
which are applied to the surfaces of 3D models in order to provide detail
and realism.

e Lighting artists lay out all of the light sources in the game world, both
static and dynamic, and work with color, intensity and light direction to
maximize the artfulness and emotional impact of each scene.

e Animators imbue the characters and objects in the game with motion.
The animators serve quite literally as actors in a game production, just
as they do in a CG film production. However, a game animator must
have a unique set of skills in order to produce animations that mesh
seamlessly with the technological underpinnings of the game engine.

® Motion capture actors are often used to provide a rough set of motion
data, which are then cleaned up and tweaked by the animators before
being integrated into the game.

® Sound designers work closely with the engineers in order to produce and
mix the sound effects and music in the game.

* Voice actors provide the voices of the characters in many games.

¢ Many games have one or more composers, who compose an original score
for the game.

As with engineers, senior artists are often called upon to be team lead-
ers. Some game teams have one or more art directors—very senior artists who
manage the look of the entire game and ensure consistency across the work of
all team members.

L1 Structure of a Typical Game Team

1.1.3 Game Designers

The game designers’ job is to design the interactive portion of the player’s
experience, typically known as gameplay. Different kinds of designers work
at different levels of detail. Some (usually senior) game designers work at
the macro level, determining the story arc, the overall sequence of chapters
or levels, and the high-level goals and objectives of the player. Other de-
signers work on individual levels or geographical areas within the virtual
game world, laying out the static background geometry, determining where
and when enemies will emerge, placing supplies like weapons and health
packs, designing puzzle elements and so on. Still other designers operate
at a highly technical level, working closely with gameplay engineers and/or
writing code (often in a high-level scripting language). Some game design-
ers are ex-engineers, who decided they wanted to play a more active role in
determining how the game will play.

Some game teams employ one or more writers. A game writer’s job can
range from collaborating with the senior game designers to construct the story
arc of the entire game, to writing individual lines of dialogue.

As with other disciplines, some senior designers play management roles.
Many game teams have a game director, whose job it is to oversee all aspects
of a game’s design, help manage schedules, and ensure that the work of indi-
vidual designers is consistent across the entire product. Senior designers also
sometimes evolve into producers.

1.1.4 Producers

The role of producer is defined differently by different studios. In some game
companies, the producer’s job is to manage the schedule and serve as a hu-
man resources manager. In other companies, producers serve in a senior game
design capacity. Still other studios ask their producers to serve as liaisons be-
tween the development team and the business unit of the company (finance,
legal, marketing, etc.). Some smaller studios don’t have producers at all. For
example, at Naughty Dog, literally everyone in the company, including the
two co-presidents, play a direct role in constructing the game; team man-
agement and business duties are shared between the senior members of the
studio.

1.1.5 Other Staff

The team of people who directly construct the game is typically supported by
a crucial team of support staff. This includes the studio’s executive manage-
ment team, the marketing department (or a team that liaises with an external

1. Introduction

marketing group), administrative staff and the IT department, whose job is
to purchase, install and configure hardware and software for the team and to
provide technical support.

1.1.6 Publishers and Studios

The marketing, manufacture and distribution of a game title are usually han-
dled by a publisher, not by the game studio itself. A publisher is typically
a large corporation, like Electronic Arts, THQ, Vivendi, Sony, Nintendo, etc.
Many game studios are not affiliated with a particular publisher. They sell
each game that they produce to whichever publisher strikes the best deal with
them. Other studios work exclusively with a single publisher, either via a
long-term publishing contract or as a fully owned subsidiary of the publishing
company. For example, THQ's game studios are independently managed, but
they are owned and ultimately controlled by THQ. Electronic Arts takes this
relationship one step further, by directly managing its studios. First-party de-
velopers are game studios owned directly by the console manufacturers (Sony,
Nintendo and Microsoft). For example, Naughty Dog is a first-party Sony de-
veloper. These studios produce games exclusively for the gaming hardware
manufactured by their parent company.

1.2 What Is a Game?

We probably all have a pretty good intuitive notion of what a game is. The
general term “game” encompasses board games like chess and Monopoly, card
games like poker and blackjack, casino games like roulette and slot machines,
military war games, computer games, various kinds of play among children,
and the list goes on. In academia we sometimes speak of game theory, in which
multiple agents select strategies and tactics in order to maximize their gains
within the framework of a well-defined set of game rules. When used in
the context of console or computer-based entertainment, the word “game”
usually conjures images of a three-dimensional virtual world featuring a hu-
manoid, animal or vehicle as the main character under player control. (Or for
the old geezers among us, perhaps it brings to mind images of two-dimensional
classics like Pong, Pac-Man, or Donkey Kong.) In his excellent book, A Theory
of Fun for Game Design, Raph Koster defines a game to be an interactive expe-
rience that provides the player with an increasingly challenging sequence of
patterns which he or she learns and eventually masters [26]. Koster’s asser-
tion is that the activities of learning and mastering are at the heart of what we
call “fun,” just as a joke becomes funny at the moment we “get it” by recog-
nizing the pattern.

1.2. What Is a Game?

For the purposes of this book, we’ll focus on the subset of games that com-
prise two- and three-dimensional virtual worlds with a small number of play-
ers (between one and 16 or thereabouts). Much of what we'll learn can also
be applied to Flash games on the Internet, pure puzzle games like Tetris, or
massively multiplayer online games (MMOG). But our primary focus will be
on game engines capable of producing first-person shooters, third-person ac-
tion/platform games, racing games, fighting games and the like.

1.2.1 Video Games as Soft Real-Time Simulations

Most two- and three-dimensional video games are examples of what com-
puter scientists would call soft real-time interactive agent-based computer simu-
lations. Let’s break this phrase down in order to better understand what it
means.

In most video games, some subset of the real world—or an imaginary
world—is modeled mathematically so that it can be manipulated by a com-
puter. The model is an approximation to and a simplification of reality (even
if it’s an imaginary reality), because it is clearly impractical to include every
detail down to the level of atoms or quarks. Hence, the mathematical model
is a simulation of the real or imagined game world. Approximation and sim-
plification are two of the game developer’s most powerful tools. When used
skillfully, even a greatly simplified model can sometimes be almost indistin-
guishable from reality—and a lot more fun.

An agent-based simulation is one in which a number of distinct entities
known as “agents” interact. This fits the description of most three-dimensional
computer games very well, where the agents are vehicles, characters, fireballs,
power dots and so on. Given the agent-based nature of most games, it should
come as no surprise that most games nowadays are implemented in an object-
oriented, or at least loosely object-based, programming language.

All interactive video games are temporal simulations, meaning that the vir-
tual game world model is dynamic—the state of the game world changes over
time as the game’s events and story unfold. A video game must also respond
to unpredictable inputs from its human player(s)—thus interactive temporal
simulations. Finally, most video games present their stories and respond to
player input in real time, making them interactive real-time simulations. One
notable exception is in the category of turn-based games like computerized
chess or non-real-time strategy games. But even these types of games usually
provide the user with some form of real-time graphical user interface. So for
the purposes of this book, we’ll assume that all video games have at least sorme
real-time constraints.

1. Introduction

At the core of every real-time system is the concept of a deadline. An ob-
vious example in video games is the requirement that the screen be updated
at least 24 times per second in order to provide the illusion of motion. (Most
games render the screen at 30 or 60 frames per second because these are mul-
tiples of an NTSC monitor’s refresh rate.) Of course, there are many other
kinds of deadlines in video games as well. A physics simulation may need
to be updated 120 times per second in order to remain stable. A character’s
artificial intelligence system may need to “think” at least once every second to
prevent the appearance of stupidity. The audio library may need to be called
at least once every 1/60 second in order to keep the audio buffers filled and
prevent audible glitches.

A “soft” real-time system is one in which missed deadlines are not catas-
trophic. Hence, all video games are soft real-time systems—if the frame rate
dies, the human player generally doesn’t! Contrast this with a hard real-time
system, in which a missed deadline could mean severe injury to or even the
death of a human operator. The avionics system in a helicopter or the control-
rod system in a nuclear power plant are examples of hard real-time systems.

Mathematical models can be analytic or numerical. For example, the ana-
lytic (closed-form) mathematical model of a rigid body falling under the in-
fluence of constant acceleration due to gravity is typically written as follows:

1
y(t) = §gt2 + vot + Yo. (1.1)

An analytic model can be evaluated for any value of its independent variables,
such as the time ¢ in the above equation, given only the initial conditions vg
and yo and the constant g. Such models are very convenient when they can be
found. However, many problems in mathematics have no closed-form solu-
tion. And in video games, where the user’s input is unpredictable, we cannot
hope to model the entire game analytically.

A numerical model of the same rigid body under gravity might be

y(t + At) = F(y(t), y(t), 4(t), . .)- (1.2)

That is, the height of the rigid body at some future time (¢ + At) can be found
as a function of the height and its first and second time derivatives at the
current time ¢. Numerical simulations are typically implemented by running
calculations repeatedly, in order to determine the state of the system at each
discrete time step. Games work in the same way. A main “game loop” runs
repeatedly, and during each iteration of the loop, various game systems such
as artificial intelligence, game logic, physics simulations and so on are given
a chance to calculate or update their state for the next discrete time step. The
results are then “rendered” by displaying graphics, emitting sound and pos-
sibly producing other outputs such as force-feedback on the joypad.

13. What Is a Game Engine?

1.3 What Is a Game Engine?

The term “game engine” arose in the mid-1990s in reference to first-person
shooter (FPS) games like the insanely popular Doom by id Software. Doom
was architected with a reasonably well-defined separation between its core
software components (such as the three-dimensional graphics rendering sys-
tem, the collision detection system or the audio system) and the art assets,
game worlds and rules of play that comprised the player’s gaming experi-
ence. The value of this separation became evident as developers began li-
censing games and retooling them into new products by creating new art,
world layouts, weapons, characters, vehicles and game rules with only min-
imal changes to the “engine” software. This marked the birth of the “mod
community”—a group of individual gamers and small independent studios
that built new games by modifying existing games, using free toolkits pro-
vided by the original developers.

Towards the end of the 1990s, some games like Quake III Arena and Un-
real were designed with reuse and “modding” in mind. Engines were made
highly customizable via scripting languages like id’s Quake C, and engine li-
censing began to be a viable secondary revenue stream for the developers who
created them. Today, game developers can license a game engine and reuse
significant portions of its key software components in order to build games.
While this practice still involves considerable investment in custom software
engineering, it can be much more economical than developing all of the core
engine components in-house.

The line between a game and its engine is often blurry. Some engines
make a reasonably clear distinction, while others make almost no attempt to
separate the two. In one game, the rendering code might “know” specifi-
cally how to draw an orc. In another game, the rendering engine might pro-
vide general-purpose material and shading facilities, and “orc-ness” might
be defined entirely in data. No studio makes a perfectly clear separation be-
tween the game and the engine, which is understandable considering that
the definitions of these two components often shift as the game’s design so-
lidifies.

Arguably a data-driven architecture is what differentiates a game engine
from a piece of software that is a game but not an engine. When a game
contains hard-coded logic or game rules, or employs special-case code to ren-
der specific types of game objects, it becomes difficult or impossible to reuse
that software to make a different game. We should probably reserve the term
“game engine” for software that is extensible and can be used as the founda-
tion for many different games without major modification.

1. Introduction

Can be “modded” to

Cannot be used to build Can be customized to build any game in a Can be used to build any
more than one game make very similar games specific genre game imaginable
1 1 1 1
o | PR
ﬁ Quake Ill Unity. ﬁ
PacMan Hydro Thunder Engine preal Engine 4, Probably
Engine Source Engine, ... impossible

Figure 1.1. Game engine reusability gamut.

Clearly this is not a black-and-white distinction. We can think of a gamut
of reusability onto which every engine falls. Figure 1.1 takes a stab at the
locations of some well-known games/engines along this gamut.

One would think that a game engine could be something akin to Apple
QuickTime or Microsoft Windows Media Player—a general-purpose piece of
software capable of playing virtually any game content imaginable. However,
this ideal has not yet been achieved (and may never be). Most game engines
are carefully crafted and fine-tuned to run a particular game on a particular
hardware platform. And even the most general-purpose multiplatform en-
gines are really only suitable for building games in one particular genre, such
as first-person shooters or racing games. It’s safe to say that the more general-
purpose a game engine or middleware component is, the less optimal it is for
running a particular game on a particular platform.

This phenomenon occurs because designing any efficient piece of software
invariably entails making trade-offs, and those trade-offs are based on as-
sumptions about how the software will be used and /or about the target hard-
ware on which it will run. For example, a rendering engine that was designed
to handle intimate indoor environments probably won’t be very good at ren-
dering vast outdoor environments. The indoor engine might use a binary
space partitioning (BSP) tree or portal system to ensure that no geometry is
drawn that is being occluded by walls or objects that are closer to the camera.
The outdoor engine, on the other hand, might use a less-exact occlusion mech-
anism, or none at all, but it probably makes aggressive use of level-of-detail
(LOD) techniques to ensure that distant objects are rendered with a minimum
number of triangles, while using high-resolution triangle meshes for geome-
try that is close to the camera.

The advent of ever-faster computer hardware and specialized graphics
cards, along with ever-more-efficient rendering algorithms and data struc-
tures, is beginning to soften the differences between the graphics engines of
different genres. It is now possible to use a first-person shooter engine to
build a real-time strategy game, for example. However, the trade-off between

14. Engine Differences Across Genres

generality and optimality still exists. A game can always be made more im-
pressive by fine-tuning the engine to the specific requirements and constraints
of a particular game and/or hardware platform.

1.4 Engine Differences Across Genres

Game engines are typically somewhat genre specific. An engine designed
for a two-person fighting game in a boxing ring will be very different from a
massively multiplayer online game (MMOG) engine or a first-person shooter
(FPS) engine or a real-time strategy (RTS) engine. However, there is also a
great deal of overlap—all 3D games, regardless of genre, require some form
of low-level user input from the joypad, keyboard and/or mouse, some form
of 3D mesh rendering, some form of heads-up display (HUD) including text
rendering in a variety of fonts, a powerful audio system, and the list goes
on. So while the Unreal Engine, for example, was designed for first-person
shooter games, it has been used successfully to construct games in a number
of other genres as well, including the wildly popular third-person shooter
franchise Gears of War by Epic Games and the smash hits Batman: Arkham
Asylum and Batman: Arkham City by Rocksteady Studios.

Let’s take a look at some of the most common game genres and explore
some examples of the technology requirements particular to each.

1.4.1 First-Person Shooters (FPS)

The first-person shooter (FPS) genre is typified by games like Quake, Unreal
Tournament, Half-Life, Counter-Strike and Battlefield (see Figure 1.2). These
games have historically involved relatively slow on-foot roaming of a po-
tentially large but primarily corridor-based world. However, modern first-
person shooters can take place in a wide variety of virtual environments in-
cluding vast open outdoor areas and confined indoor areas. Modern FPS
traversal mechanics can include on-foot locomotion, rail-confined or free-
roaming ground vehicles, hovercraft, boats and aircraft. For an overview of
this genre, see http://en.wikipedia.org/wiki/First-person_shooter.

First-person games are typically some of the most technologically chal-
lenging to build, probably rivaled in complexity only by third-person shooter/
action/platformer games and massively multiplayer games. This is because
first-person shooters aim to provide their players with the illusion of being
immersed in a detailed, hyperrealistic world. It is not surprising that many of
the game industry’s big technological innovations arose out of the games in
this genre.

1. Introduction

BATTLEFIELD 4

Figure 1.2. Battlefield 4 by Electronic Arts/DICE (PC, Xbox 360, PlayStation 3, Xbox One, PlaySta-
tion 4). (See Color Plate I.)

First-person shooters typically focus on technologies such as:

¢ efficient rendering of large 3D virtual worlds;

* aresponsive camera control/aiming mechanic;

e high-fidelity animations of the player’s virtual arms and weapons;
* awide range of powerful handheld weaponry;

¢ a forgiving player character motion and collision model, which often
gives these games a “floaty” feel;

¢ high-fidelity animations and artificial intelligence for the non-player
characters (NPCs)—the player’s enemies and allies; and

¢ small-scale online multiplayer capabilities (typically supporting up to
64 simultaneous players), and the ubiquitous “death match” gameplay
mode.

The rendering technology employed by first-person shooters is almost al-
ways highly optimized and carefully tuned to the particular type of environ-
ment being rendered. For example, indoor “dungeon crawl” games often em-
ploy binary space partitioning trees or portal-based rendering systems. Out-
door FPS games use other kinds of rendering optimizations such as occlusion
culling, or an offline sectorization of the game world with manual or auto-
mated specification of which target sectors are visible from each source sector.

1.4. Engine Differences Across Genres

Of course, immersing a player in a hyperrealistic game world requires
much more than just optimized high-quality graphics technology. The charac-
ter animations, audio and music, rigid body physics, in-game cinematics and
myriad other technologies must all be cutting-edge in a first-person shooter.
So this genre has some of the most stringent and broad technology require-
ments in the industry.

1.4.2 Platformers and Other Third-Person Games

“Platformer” is the term applied to third-person character-based action games
where jumping from platform to platform is the primary gameplay mechanic.
Typical games from the 2D era include Space Panic, Donkey Kong, Pitfall! and
Super Mario Brothers. The 3D era includes platformers like Super Mario 64,
Crash Bandicoot, Rayman 2, Sonic the Hedgehog, the Jak and Daxter series (Fig-
ure 1.3), the Ratchet & Clank series and Super Mario Galaxy. See http://en.
wikipedia.org/wiki/Platformer for an in-depth discussion of this genre.

In terms of their technological requirements, platformers can usually be
lumped together with third-person shooters and third-person action/adven-

Figure 1.3. Jak Il by Naughty Dog (Jak, Daxter, Jak and Daxter, and Jak Il © 2003, 2013/™ SCEA.
Created and developed by Naughty Dog, PlayStation 2). (See Color Plate I1.)

1. Introduction

Figure 1.4. Gears of War 3 by Epic Games (Xbox 360). (See Color Plate Ill.)

ture games like Dead Space 2, Gears of War 3 (Figure 1.4), Red Dead Remption,
the Uncharted series, the Resident Evil series, The Last of Us, and the list goes on.

Third-person character-based games have a lot in common with first-per-
son shooters, but a great deal more emphasis is placed on the main character’s
abilities and locomotion modes. In addition, high-fidelity full-body character
animations are required for the player’s avatar, as opposed to the somewhat
less-taxing animation requirements of the “floating arms” in a typical FPS
game. It’s important to note here that almost all first-person shooters have
an online multiplayer component, so a full-body player avatar must be ren-
dered in addition to the first-person arms. However, the fidelity of these FPS
player avatars is usually not comparable to the fidelity of the non-player char-
acters in these same games; nor can it be compared to the fidelity of the player
avatar in a third-person game.

In a platformer, the main character is often cartoon-like and not particu-
larly realistic or high-resolution. However, third-person shooters often fea-
ture a highly realistic humanoid player character. In both cases, the player
character typically has a very rich set of actions and animations.

Some of the technologies specifically focused on by games in this genre
include:

1.4. Engine Differences Across Genres

¢ moving platforms, ladders, ropes, trellises and other interesting locomo-
tion modes;

¢ puzzle-like environmental elements;

¢ a third-person “follow camera” which stays focused on the player char-
acter and whose rotation is typically controlled by the human player via
the right joypad stick (on a console) or the mouse (on a PC—note that
while there are a number of popular third-person shooters on a PC, the
platformer genre exists almost exclusively on consoles); and

* acomplex camera collision system for ensuring that the view point never
“clips” through background geometry or dynamic foreground objects.

1.4.3 Fighting Games

Fighting games are typically two-player games involving humanoid charac-
ters pummeling each other in a ring of some sort. The genre is typified by
games like Soul Calibur and Tekken 3 (see Figure 1.5). The Wikipedia page
http://en.wikipedia.org/wiki/Fighting_game provides an overview of this
genre.

Traditionally games in the fighting genre have focused their technology
efforts on:

00°01"80
L | ————— B — |
JIN 'R T HWOARANG

Figure 1.5. Tekken 3 by Namco (PlayStation). (See Color Plate IV.)

1. Introduction

® arich set of fighting animations;

e accurate hit detection;

® a user input system capable of detecting complex button and joystick
combinations; and

* crowds, but otherwise relatively static backgrounds.

Since the 3D world in these games is small and the camera is centered
on the action at all times, historically these games have had little or no need
for world subdivision or occlusion culling. They would likewise not be ex-
pected to employ advanced three-dimensional audio propagation models, for
example.

State-of-the-art fighting games like EA’s Fight Night Round 4 (Figure 1.6)
have upped the technological ante with features like:

¢ high-definition character graphics, including realistic skin shaders with
subsurface scattering and sweat effects;

¢ high-fidelity character animations; and

* physics-based cloth and hair simulations for the characters.

It’s important to note that some fighting games like Heavenly Sword take
place in a large-scale virtual world, not a confined arena. In fact, many people
consider this to be a separate genre, sometimes called a brawler. This kind of

Figure 1.6. Fight Night Round 4 by EA (PlayStation 3). (See Color Plate V.)

14. Engine Differences Across Genres

fighting game can have technical requirements more akin to those of a third-
person shooter or real-time strategy game.

1.4.4 Racing Games

The racing genre encompasses all games whose primary task is driving a
car or other vehicle on some kind of track. The genre has many subcat-
egories. Simulation-focused racing games (“sims”) aim to provide a driv-
ing experience that is as realistic as possible (e.g., Gran Turismo). Arcade
racers favor over-the-top fun over realism (e.g., San Francisco Rush, Cruis'n
USA, Hydro Thunder). One subgenre explores the subculture of street rac-
ing with tricked out consumer vehicles (e.g., Need for Speed, Juiced). Kart
racing is a subcategory in which popular characters from platformer games
or cartoon characters from TV are re-cast as the drivers of whacky vehicles
(e.g., Mario Kart, Jak X, Freaky Flyers). Racing games need not always in-
volve time-based competition. Some kart racing games, for example, offer
modes in which players shoot at one another, collect loot or engage in a va-
riety of other timed and untimed tasks. For a discussion of this genre, see
http://en.wikipedia.org/wiki/Racing_game.

A racing game is often very linear, much like older FPS games. However,
travel speed is generally much faster than in an FPS. Therefore, more focus is
placed on very long corridor-based tracks, or looped tracks, sometimes with
various alternate routes and secret short-cuts. Racing games usually focus all
their graphic detail on the vehicles, track and immediate surroundings. How-
ever, kart racers also devote significant rendering and animation bandwidth
to the characters driving the vehicles. Figure 1.7 shows a screenshot from
the next installment in the well-known Gran Turismo racing game series, Gran
Turismo 6, developed by Polyphony Digital and published by Sony Computer
Entertainment.

Some of the technological properties of a typical racing game include the
following techniques:

* Various “tricks” are used when rendering distant background elements,
such as employing two-dimensional cards for trees, hills and mountains.

¢ The track is often broken down into relatively simple two-dimensional
regions called “sectors.” These data structures are used to optimize
rendering and visibility determination, to aid in artificial intelligence
and path finding for non-human-controlled vehicles, and to solve many
other technical problems.

¢ The camera typically follows behind the vehicle for a third-person per-
spective, or is sometimes situated inside the cockpit first-person style.

20

1. Introduction

Figure 1.7. Gran Turismo 6 by Polyphony Digital (PlayStation 3). (See Color Plate VI.)

* When the track involves tunnels and other “tight” spaces, a good deal
of effort is often put into ensuring that the camera does not collide with
background geometry.

1.4.5 Real-Time Strategy (RTS)

The modern real-time strategy (RTS) genre was arguably defined by Dune II:
The Building of a Dynasty (1992). Other games in this genre include Warcraft,
Command & Conquer, Age of Empires and Starcraft. In this genre, the player
deploys the battle units in his or her arsenal strategically across a large playing
field in an attempt to overwhelm his or her opponent. The game world is
typically displayed at an oblique top-down viewing angle. For a discussion
of this genre, see http://en.wikipedia.org/wiki/Real-time_strategy.

The RTS player is usually prevented from significantly changing the view-
ing angle in order to see across large distances. This restriction permits de-
velopers to employ various optimizations in the rendering engine of an RTS
game.

Older games in the genre employed a grid-based (cell-based) world con-
struction, and an orthographic projection was used to greatly simplify the ren-
derer. For example, Figure 1.8 shows a screenshot from the classic RTS Age of
Empires.

Modern RTS games sometimes use perspective projection and a true 3D
world, but they may still employ a grid layout system to ensure that units and
background elements, such as buildings, align with one another properly. A
popular example, Command & Conquer 3, is shown in Figure 1.9.

1.4. Engine Differences Across Genres

21

RE00/600

- ¥ p > oy
e e — e T Vel ¥ . ST v D)

Figure 1.8. Age of Empires by Ensemble Studios (PC). (See Color Plate V1)

Figure 1.9. Command & Conquer 3 by EA Los Angeles (PC, Xbox 360). (See Color Plate VIIL)

1. Introduction

Some other common practices in RTS games include the following tech-
niques:

¢ Each unit is relatively low-res, so that the game can support large num-
bers of them on-screen at once.

e Height-field terrain is usually the canvas upon which the game is de-
signed and played.

¢ The player is often allowed to build new structures on the terrain in
addition to deploying his or her forces.

® User interaction is typically via single-click and area-based selection of
units, plus menus or toolbars containing commands, equipment, unit

types, building types, etc.

1.4.6 Massively Multiplayer Online Games (MMOG)

The massively multiplayer online game (MMOG or just MMO) genre is typ-
ified by games like Guild Wars 2 (AreaNet/NCsoft), EverQuest (989 Studios/
SOE), World of Warcraft (Blizzard) and Star Wars Galaxies (SOE/Lucas Arts), to
name a few. An MMO is defined as any game that supports huge numbers of
simultaneous players (from thousands to hundreds of thousands), usually all
playing in one very large, persistent virtual world (i.e., a world whose internal
state persists for very long periods of time, far beyond that of any one player’s
gameplay session). Otherwise, the gameplay experience of an MMO is often
similar to that of their small-scale multiplayer counterparts. Subcategories
of this genre include MMO role-playing games (MMORPG), MMO real-time
strategy games (MMORTS) and MMO first-person shooters (MMOEFPS). For
a discussion of this genre, see http://en.wikipedia.org/wiki/MMOG. Fig-
ure 1.10 shows a screenshot from the hugely popular MMORPG World of War-
craft.

At the heart of all MMOGs is a very powerful battery of servers. These
servers maintain the authoritative state of the game world, manage users sign-
ing in and out of the game, provide inter-user chat or voice-over-IP (VoIP) ser-
vices and more. Almost all MMOGs require users to pay some kind of regular
subscription fee in order to play, and they may offer micro-transactions within
the game world or out-of-game as well. Hence, perhaps the most important
role of the central server is to handle the billing and micro-transactions which
serve as the game developer’s primary source of revenue.

Graphics fidelity in an MMO is almost always lower than its non-massively
multiplayer counterparts, as a result of the huge world sizes and extremely
large numbers of users supported by these kinds of games.

1.4. Engine Differences Across Genres 23

Figure 1.10. World of Warcraft by Blizzard Entertainment (PC). (See Color Plate 1X)

Figure 1.11 shows a screen from Bungie’s latest highly anticipated FPS
game, Destiny. This game has been called an MMOEFPS because it incorpo-
rates some aspects of the MMO genre. However, Bungie prefers to call it a
“shared world” game because unlike a traditional MMO, in which a player
can see and interact with literally any other player on a particular server, Des-
tiny provides “on-the-fly match-making.” This permits the player to interact

Figure 1.11. Destiny by Bungie (Xbox 360, PlayStation 3, Xbox One, PlayStation 4). (See Color
Plate X.)

24

1. Introduction

only with the other players with whom they have been matched by the server.
Also unlike a traditional MMO, the graphics fidelity in Destiny promises to be
among the best of its generation.

1.4.7 Player-Authored Content

As social media takes off, games are becoming more and more colaborative in
nature. A recent trend in game design is toward player-authored content. For
example, Media Molecule’s Little Big Planet and Little Big Planet 2 (Figure 1.12)
are technically puzzle platformers, but their most notable and unique feature
is that they encourage players to create, publish and share their own game
worlds. Media Molecule’s latest instalment in this up-and-coming genre is
Tearaway for the PlayStation Vita (Figure 1.13).

Perhaps the most popular game today in the player-created content genre
is Minecraft (Figure 1.14). The brilliance of this game lies in its simplicity:
Minecraft game worlds are constructed from simple cubic voxel-like elements
mapped with low-resolution textures to mimic various materials. Blocks can
be solid, or they can contain items such as torches, anvils, signs, fences and
panes of glass. The game world is populated with one or more player charac-
ters, animals such as chickens and pigs, and various “mobs”—good guys like
villagers and bad guys like zombies and the ubiquitous creepers who sneak up
on unsuspecting players and explode (only scant moments after warning the
player with the “hiss” of a burning fuse).

Figure 1.12. Little Big Planet 2 by Media Molecule, © 2014 Sony Computer Entertainment Europe
(PlayStation 3). (See Color Plate XI.)

1.4. Engine Differences Across Genres

25

Figure 1.13. Tearaway by Media Molecule, © 2014 Sony Computer Entertainment Europe (PlaySta-
tion Vita). (See Color Plate XII.)

Players can create a randomized world in Minecraft and then dig into the
generated terrain to create tunnels and caverns. They can also construct their
own structures, ranging from simple terrain and foliage to vast and complex
buildings and machinery. Perhaps the biggest stroke of genious in Minecraft
is redstone. This material serves as “wiring,” allowing players to lay down

Figure 1.14. Minecraft by Markus “Notch” Persson / Mojang AB (PC, Mac, Xbox 360, PlayStation 3,
PlayStation Vita, iOS). (See Color Plate XIII.)

26

1. Introduction

circuitry that controls pistons, hoppers, mine carts and other dynamic ele-
ments in the game. As a result, players can create virtually anything they can
imagine, and then share their worlds with their friends by hosting a server
and inviting them to play online.

1.4.8 Other Genres

There are of course many other game genres which we won't cover in depth
here. Some examples include:

® sports, with subgenres for each major sport (football, baseball, soccer,
golf, etc.);

¢ role-playing games (RPG);

* God games, like Populous and Black & White;

* environmental/social simulation games, like SimCity or The Sims;

* puzzle games like Tetris;

* conversions of non-electronic games, like chess, card games, go, etc.;

* web-based games, such as those offered at Electronic Arts’ Pogo site;

and the list goes on.

We have seen that each game genre has its own particular technological re-
quirements. This explains why game engines have traditionally differed quite
a bit from genre to genre. However, there is also a great deal of technological
overlap between genres, especially within the context of a single hardware
platform. With the advent of more and more powerful hardware, differences
between genres that arose because of optimization concerns are beginning to
evaporate. It is therefore becoming increasingly possible to reuse the same en-
gine technology across disparate genres, and even across disparate hardware
platforms.

1.5 Game Engine Survey

1.5.1 The Quake Family of Engines

The first 3D first-person shooter (FPS) game is generally accepted to be Castle
Wolfenstein 3D (1992). Written by id Software of Texas for the PC platform, this
game led the game industry in a new and exciting direction. Id Software went
on to create Doom, Quake, Quake II and Quake I1I. All of these engines are very
similar in architecture, and I will refer to them as the Quake family of engines.
Quake technology has been used to create many other games and even other

1.5. Game Engine Survey

27

engines. For example, the lineage of Medal of Honor for the PC platform goes
something like this:

* Quake III (Id);

e Sin (Ritual);

e FA.KK. 2 (Ritual);

* Medal of Honor: Allied Assault (2015 & Dreamworks Interactive); and
® Medal of Honor: Pacific Assault (Electronic Arts, Los Angeles).

Many other games based on Quake technology follow equally circuitous
paths through many different games and studios. In fact, Valve’s Source en-
gine (used to create the Half-Life games) also has distant roots in Quake tech-
nology.

The Quake and Quake II source code is freely available, and the original
Quake engines are reasonably well architected and “clean” (although they are
of course a bit outdated and written entirely in C). These code bases serve
as great examples of how industrial-strength game engines are built. The
full source code to Quake and Quake I is available at https://github.com/
id-Software/Quake-2.

If you own the Quake and/or Quake II games, you can actually build the
code using Microsoft Visual Studio and run the game under the debugger us-
ing the real game assets from the disk. This can be incredibly instructive. You
can set breakpoints, run the game and then analyze how the engine actually
works by stepping through the code. I highly recommend downloading one
or both of these engines and analyzing the source code in this manner.

1.5.2 The Unreal Family of Engines

Epic Games, Inc. burst onto the FPS scene in 1998 with its legendary game Un-
real. Since then, the Unreal Engine has become a major competitor to Quake
technology in the FPS space. Unreal Engine 2 (UE2) is the basis for Unreal
Tournament 2004 (UT2004) and has been used for countless “mods,” university
projects and commercial games. Unreal Engine 4 (UE4) is the latest evolution-
ary step, boasting some of the best tools and richest engine feature sets in the
industry, including a convenient and powerful graphical user interface for
creating shaders and a graphical user interface for game logic programming
called Kismet. Many games are being developed with UE4 lately, including of
course Epic’s popular Gears of War.

The Unreal Engine has become known for its extensive feature set and
cohesive, easy-to-use tools. The Unreal Engine is not perfect, and most devel-
opers modify it in various ways to run their game optimally on a particular

28

1. Introduction

hardware platform. However, Unreal is an incredibly powerful prototyping
tool and commercial game development platform, and it can be used to build
virtually any 3D first-person or third-person game (not to mention games in
other genres as well).

The Unreal Developer Network (UDN) provides a rich set of documenta-
tion and other information about all released versions of the Unreal Engine
(see http://udn.epicgames.com/Main/WebHome.html). Some documenta-
tion is freely available. However, access to the full documentation for the
latest version of the Unreal Engine is generally restricted to licensees of the
engine. There are plenty of other useful websites and wikis that cover the Un-
real Engine. One popular one is http://www.beyondunreal.com.

Thankfully, Epic now offers full access to Unreal Engine 4, source code and
all, for a low monthly subscription fee plus a cut of your game’s profits if it
ships. This makes UE4 a viable choice for small independent game studios.

1.5.3 The Half-Life Source Engine

Source is the game engine that drives the smash hit Half-Life 2 and its sequels
HL2: Episode One nad HL2: Episode Two, Team Fortress 2 and Portal (shipped
together under the title The Orange Box). Source is a high-quality engine, ri-
valing Unreal Engine 4 in terms of graphics capabilities and tool set.

1.5.4 DICE’s Frostbite

The Frostbite engine grew out of DICE’s efforts to create a game engine for
Battlefield Bad Company in 2006. Since then, the Frostbite engine has become
the most widely adopted engine within Electronic Arts (EA); it is used by
many of EA’s key franchises including Mass Effect, Battlefield, Need for Speed
and Dragon Age. Frostbite boasts a powerful unified asset creation tool called
FrostEd, a powerful tools pipeline known as Backend Services, and a powerful
runtime game engine. At the time this was written, the latest version of the
engine is Frostbite 3, which is being used on DICE’s popular title Battlefield 4
for the PC, Xbox 360, Xbox One, PlayStation 3 and PlayStation 4, along with
new games in the Command & Congquer, Dragon Age and Mass Effect franchises.

1.5.5 CryENGINE

Crytek originally developed their powerful game engine known as CryEN-
GINE as a tech demo for Nvidia. When the potential of the technology was
recognized, Crytek turned the demo into a complete game and Far Cry was
born. Since then, many games have been made with CryENGINE including
Crysis, Codename Kingdoms, Warface and Ryse: Son of Rome. Over the years the

1.5. Game Engine Survey

29

engine has evolved into what is now Crytek’s latest offering, CryENGINE 3.
This powerful game development platform offers a powerful suite of asset-
creation tools and a feature-rich runtime engine featuring high-quality real-
time graphics. CryENGINE 3 can be used to make games targeting a wide
range of platforms including Xbox One, Xbox 360, PlayStation 4, PlayStation 3,
Wii U and PC.

1.5.6 Sony’s PhyreEngine

In an effort to make developing games for Sony’s PlayStation 3 platform more
accessible, Sony introduced PhyreEngine at the Game Developer’s Confer-
ence (GDC) in 2008. As of 2013, PhyreEngine has evolved into a powerful and
full-featured game engine, supporting an impressive array of features includ-
ing advanced lighting and deferred rendering. It has been used by many stu-
dios to build over 90 published titles, including thatgamecompany’s hits flOw,
Flower and Journey, VectorCell’s AMY, and From Software’s Demon’s Souls and
Dark Souls. PhyreEngine now supports Sony’s PlayStation 4, PlayStation 3,
PlayStation 2, PlayStation Vita and PSP platforms. PhyreEngine 3.5 gives de-
velopers access to the power of the highly parallel Cell architecture on PS3
and the advanced compute capabilities of the PS4, along with a streamlined
new world editor and other powerful game development tools. It is available
free of charge to any licensed Sony developer as part of the PlayStation SDK.

1.5.7 Microsoft’s XNA Game Studio

Microsoft’'s XNA Game Studio is an easy-to-use and highly accessible game
development platform aimed at encouraging players to create their own games
and share them with the online gaming community, much as YouTube encour-
ages the creation and sharing of home-made videos.

XNA is based on Microsoft’s C# language and the Common Language
Runtime (CLR). The primary development environment is Visual Studio or
its free counterpart, Visual Studio Express. Everything from source code to
game art assets are managed within Visual Studio. With XNA, developers
can create games for the PC platform and Microsoft’s Xbox 360 console. After
paying a modest fee, XNA games can be uploaded to the Xbox Live network
and shared with friends. By providing excellent tools at essentially zero cost,
Microsoft has brilliantly opened the floodgates for the average person to cre-
ate new games.

1.5.8 Unity

Unity is a powerful cross-platform game development environment and run-
time engine supporting a wide range of platforms. Using Unity, developers

30

1. Introduction

can deploy their games on mobile platforms (Apple iOS, Google Android,
Windows phone and BlackBerry 10 devices), consoles (Microsoft Xbox 360
and Xbox One, Sony PlayStation 3 and PlayStation 4, and Nintendo Wii and
Wii U) and desktop computers (Microsoft Windows, Apple Macintosh and
Linux). It even supports a Webplayer for deployment on all the major web
browsers.

Unity’s primary design goals are ease of development and cross-platform
game deployment. As such, Unity provides an easy-to-use integrated editor
environment, in which you can create and manipulate the assets and entities
that make up your game world and quickly preview your game in action right
there in the editor, or directly on your target hardware. Unity also provides
a powerful suite of tools for analyzing and optimizing your game on each
target platform, a comprehensive asset conditioning pipeline, and the ability
to manage the performance-quality trade-off uniquely on each deployment
platform. Unity supports scripting in JavaScript, C# or Boo; a powerful ani-
mation system supporting animation retargeting (the ability to play an anima-
tion authored for one character on a totally different character); and support
for networked multiplayer games.

Unity has been used to create a wide variety of published games, including
Deus Ex: The Fall by N-Fusion/Eidos Montreal, Chop Chop Runner by Gameri-
zon and Zombieville USA by Mika Mobile, Inc.

1.5.9 2D Game Engines for Non-programmers

Two-dimensional games have become incredibly popular with the recent ex-
plosion of casual web gaming and mobile gaming on platforms like Apple
iPhone/iPad and Google Android. A number of popular game/multimedia
authoring toolkits have become available, enabling small game studios and
independent developers to create 2D games for these platforms. These
toolkits emphasize ease of use and allow users to employ a graphical user
interface to create a game rather than requiring the use of a programming
language. Check out this YouTube video to get a feel for the kinds of games
you can create with these toolkits: https://www.youtube.com/watch?v=
3Zqlyo0lxOU

* Multimedia Fusion 2 (http://www.clickteam.com/website/world is a 2D
game/multimedia authoring toolkit developed by Clickteam. Fusion
is used by industry professionals to create games, screen savers and
other multimedia applications. Fusion and its simpler counterpart, The
Games Factory 2, are also used by educational camps like PlanetBravo
(http://www.planetbravo.com) to teach kids about game development

1.5. Game Engine Survey

31

and programming/logic concepts. Fusion supports iOS, Android, Flash,
Java and XNA platforms.

¢ Game Salad Creator (http://gamesalad.com/creator) is another graphical
game/multimedia authoring toolkit aimed at non-programmers, simi-
lar in many respects to Fusion.

¢ Scratch (http://scratch.mit.edu) is an authoring toolkit and graphical pro-
gramming language that can be used to create interactive demos and
simple games. It is a great way for young people to learn about pro-
gramming concepts such as conditionals, loops and event-driven pro-
gramming. Scratch was developed in 2003 by the Lifelong Kindergarten
group, led by Mitchel Resnick at the MIT Media Lab.

1.5.10 Other Commercial Engines

There are lots of other commercial game engines out there. Although indie
developers may not have the budget to purchase an engine, many of these
products have great online documentation and/or wikis that can serve as a
great source of information about game engines and game programming in
general. For example, check out the C4 Engine by Terathon Software (http://
www.terathon.com), a company founded by Eric Lengyel in 2001. Documen-
tation for the C4 Engine can be found on Terathon’s website, with additional
details on the C4 Engine wiki.

1.5.11 Proprietary In-House Engines

Many companies build and maintain proprietary in-house game engines. Elec-
tronic Arts built many of its RTS games on a proprietary engine called Sage,
developed at Westwood Studios. Naughty Dog’s Crash Bandicoot and Jak and
Daxter franchises were built on a proprietary engine custom tailored to the
PlayStation and PlayStation 2. For the Uncharted series, Naughty Dog devel-
oped a brand new engine custom tailored to the PlayStation 3 hardware. This
engine evolved and was ultimately used to create Naughty Dog’s latest hit,
The Last of Us, and it will continue to evolve as Naughty Dog transitions onto
the PlayStation 4. And of course, most commercially licensed game engines
like Quake, Source, Unreal Engine 3, CryENGINE 3 and Frostbite 2 all started
out as proprietary in-house engines.

1.5.12 Open Source Engines

Open source 3D game engines are engines built by amateur and professional
game developers and provided online for free. The term “open source” typi-

32

1. Introduction

cally implies that source code is freely available and that a somewhat open de-
velopment model is employed, meaning almost anyone can contribute code.
Licensing, if it exists at all, is often provided under the Gnu Public License
(GPL) or Lesser Gnu Public License (LGPL). The former permits code to be
freely used by anyone, as long as their code is also freely available; the latter
allows the code to be used even in proprietary for-profit applications. Lots of
other free and semi-free licensing schemes are also available for open source
projects.

There are a staggering number of open source engines available on the
web. Some are quite good, some are mediocre and some are just plain awful!
The list of game engines provided online at http://en.wikipedia.org/wiki/
List_of_game_engines will give you a feel for the sheer number of engines
that are out there.

OGRE is a well-architected, easy-to-learn and easy-to-use 3D rendering
engine. It boasts a fully featured 3D renderer including advanced lighting
and shadows, a good skeletal character animation system, a two-dimensional
overlay system for heads-up displays and graphical user interfaces, and a
post-processing system for full-screen effects like bloom. OGRE is, by its
authors’ own admission, not a full game engine, but it does provide
many of the foundational components required by pretty much any game
engine.

Some other well-known open source engines are listed here:

e Panda3D is a script-based engine. The engine’s primary interface is the
Python custom scripting language. It is designed to make prototyping
3D games and virtual worlds convenient and fast.

* Yake is a game engine built on top of OGRE.

* Crystal Space is a game engine with an extensible modular architecture.

¢ Torque and Irrlicht are also well-known game engines.

1.6 Runtime Engine Architecture

A game engine generally consists of a tool suite and a runtime component.
We'll explore the architecture of the runtime piece first and then get into tool
architecture in the following section.

Figure 1.15 shows all of the major runtime components that make up a
typical 3D game engine. Yeah, it’s big! And this diagram doesn’t even account
for all the tools. Game engines are definitely large software systems.

Like all software systems, game engines are built in layers. Normally up-
per layers depend on lower layers, but not vice versa. When a lower layer

1.6. Runtime Engine Architecture 33

Game-Specific Rendering Player Mechanics ‘Game Cameras Al

State Machine & Camera-Relative = Scripted/Animated Goals & Decision- Actions
Animation ‘ Controls (HID) Fixed Cameras Cameras Making (Engine Interface) ‘

Terrain Rendering Water Simulation Collision Manifold ‘ Movement ‘ Plﬁ:‘zﬂw TE;Z‘;%E’:m ‘ Sig;;:;z:& ‘ Path Finding (A*) ‘

& Rendering

Front End ‘
Heads-Up Display || Full-Motion Video In-Game Cinematics High-Level Game Flow System/FSM
(HUD) (FMV) (IGC)
‘ In-Game GUI H In-Game Menus ‘ Wrapp':rosd/eAttracl Scripting System ‘
Static World Dynamic Game Real-Time Agent- Event/Messaging World Loading /
Visual Effects Elements Object Model Based Simulation System Streaming
Light Mapping & - PRT Lighting,
Dynamic Shadows || OR Lighting Subsurf. Scatter Online Multiplayer Audio
Particle & Decal Environment Match-Making &
Systems H Post Effects H Mapping Game Mgrmt. DSP/Effects
Object Authority .
Scene Graph / Culling Optimizations Policy 3D Audio Model
Spatial Hash (BSP . Game State Audio Playback /
Occlusion & PVS LOD System udio Playbacl
Tree, kd-Tree, ...) 4 Replication Management
T
Low-Level Renderer Profiling & Debugging Collision & Physics Human Interface
Devices (HID)
Materials & Static & Dynamic Recording & Forces & Ray/Shape
Shaders Lighting ‘ CamEES ‘ ‘ s lonts ‘ Playback Constraints Casting (Queries)
—
Primitive Viewports & Texture and Debug Drawing Memory & fhec 0 Game-Specific
‘ ‘Submission ‘ ‘ Virtual Screens ‘ ‘ Surface Mgmt. ‘ ‘ (Lines etc.) Performance Stats Rigid Bodies Phantoms Interface
. . In-Game Menus Shapes/ Physics/Collision Physical Device
CraghicspRlicelnenes or Console Collidables World
Resources (Game Assets)
3D Model Texture Material Font Skeleton Collision Physics otc.
Resource Resource Resource Resource Resource Resource Parameters World/Map "
‘ Resource Manager ‘
Core Systems
Module Start-Up " " " . Strings and Debug Printing Localization .
o Shut-Downs ‘ Assertions H Unit Testing Memory Allocation Math Library Hashed Suing Ids and Logging Services Movie Player
Parsers (CSV, Profiling / Stats Engine Config Random Number Curves & RTTI/ Reflection Object Handles / Asynchronous Memory Card I/O
XML, etc.) Gathering (INI files etc.) Generator Surfaces Library & Serialization Unique Ids File 110 (Older Consoles)
Platform Independence Layer
o Atomic Data Collections and " Network Transport 0 . e Graphics Physics/Coll.
Platform Detection Types Merators H File System Layer (UDPITCP) Hi-Res Timer H Threading Library Wrappers Wrapper
31 Party SDKs
DirectX, OpenGL, Havok, PhysX, Granny, Havok 5
libgem, Edge, etc. ODE etc. Boosts+ STL/STLPort Kynapse Animation, etc. Euphoria ete.

Figure 1.15. Runtime game engine architecture.

34

1. Introduction

depends upon a higher layer, we call this a circular dependency. Dependency
cycles are to be avoided in any software system, because they lead to unde-
sirable coupling between systems, make the software untestable and inhibit
code reuse. This is especially true for a large-scale system like a game engine.

What follows is a brief overview of the components shown in the diagram
in Figure 1.15. The rest of this book will be spent investigating each of these
components in a great deal more depth and learning how these components
are usually integrated into a functional whole.

1.6.1 Target Hardware

The target hardware layer, shown in isolation in Figure 1.16, represents the
computer system or console on which the game will run. Typical platforms
include Microsoft Windows, Linux and MacOS-based PCs; mobile platforms
like the Apple iPhone and iPad, Android smart phones and tablets, Sony’s
PlayStation Vita and Amazon’s Kindle Fire (among others); and game con-
soles like Microsoft’s Xbox, Xbox 360 and Xbox One, Sony’s PlayStation, Play-
Station 2, PlayStation 3 and PlayStation 4, and Nintendo’s DS, GameCube, Wii
and Wii U. Most of the topics in this book are platform-agnostic, but we’ll also
touch on some of the design considerations peculiar to PC or console devel-
opment, where the distinctions are relevant.

Figure 1.16. Hardware layer.

1.6.2 Device Drivers

As depicted in Figure 1.17, device drivers are low-level software components
provided by the operating system or hardware vendor. Drivers manage hard-
ware resources and shield the operating system and upper engine layers from
the details of communicating with the myriad variants of hardware devices
available.

Figure 1.17. Device driver layer.

1.6. Runtime Engine Architecture

Figure 1.18. Operating system layer.

1.6.3 Operating System

On a PC, the operating system (OS) is running all the time. It orchestrates the
execution of multiple programs on a single computer, one of which is your
game. The OS layer is shown in Figure 1.18. Operating systems like Microsoft
Windows employ a time-sliced approach to sharing the hardware with multi-
ple running programs, known as preemptive multitasking. This means that a
PC game can never assume it has full control of the hardware—it must “play
nice” with other programs in the system.

On a console, the operating system is often just a thin library layer that is
compiled directly into your game executable. On a console, the game typically
“owns” the entire machine. However, with the introduction of the Xbox 360
and PlayStation 3, this was no longer strictly the case. The operating sys-
tem on these consoles and their successors, the Xbox One and PlayStation 4
respectively, can interrupt the execution of your game, or take over certain
system resources, in order to display online messages, or to allow the player
to pause the game and bring up the PS3’s Xross Media Bar or the Xbox 360’s
dashboard, for example. So the gap between console and PC development is
gradually closing (for better or for worse).

1.6.4 Third-Party SDKs and Middleware

Most game engines leverage a number of third-party software development
kits (SDKs) and middleware, as shown in Figure 1.19. The functional or class-
based interface provided by an SDK is often called an application program-
ming interface (API). We will look at a few examples.

3rd Party SDKs

DirectX, OpenGL,
libgem, Edge, etc.

Havok, PhysX,
ODE etc.

Granny, Havok

STL/STLPort Animation, etc.

‘ Boost++ ‘

‘ Kynapse

Euphoria ‘ ‘ etc. ‘

Figure 1.19. Third-party SDK layer.

1.6.4.1 Data Structures and Algorithms

Like any software system, games depend heavily on collection data structures
and algorithms to manipulate them. Here are a few examples of third-party
libraries which provide these kinds of services:

36

1. Introduction

e STL. The C++ standard template library provides a wealth of code and
algorithms for managing data structures, strings and stream-based I/O.

e STLport. This is a portable, optimized implementation of STL.

® Boost. Boost is a powerful data structures and algorithms library, de-
signed in the style of STL. (The online documentation for Boost is also a
great place to learn a great deal about computer science!)

e Loki. Loki is a powerful generic programming template library which is
exceedingly good at making your brain hurt!

Game developers are divided on the question of whether to use template
libraries like STL in their game engines. Some believe that the memory alloca-
tion patterns of STL, which are not conducive to high-performance program-
ming and tend to lead to memory fragmentation (see Section 5.2.1.4), make
STL unusable in a game. Others feel that the power and convenience of STL
outweigh its problems and that most of the problems can in fact be worked
around anyway. My personal belief is that STL is all right for use on a PC, be-
cause its advanced virtual memory system renders the need for careful mem-
ory allocation a bit less crucial (although one must still be very careful). On
a console, with limited or no virtual memory facilities and exorbitant cache-
miss costs, you're probably better off writing custom data structures that have
predictable and/or limited memory allocation patterns. (And you certainly
won't go far wrong doing the same on a PC game project either.)

1.6.4.2 Graphics

Most game rendering engines are built on top of a hardware interface library,
such as the following:

® Glide is the 3D graphics SDK for the old Voodoo graphics cards. This
SDK was popular prior to the era of hardware transform and lighting
(hardware T&L) which began with DirectX 7.

¢ OpenGL is a widely used portable 3D graphics SDK.

* DirectX is Microsoft’s 3D graphics SDK and primary rival to OpenGL.

e libgem is a low-level direct interface to the PlayStation 3’s RSX graphics
hardware, which was provided by Sony as a more efficient alternative
to OpenGL.

e Edgeis a powerful and highly efficient rendering and animation engine
produced by Naughty Dog and Sony for the PlayStation 3 and used by
a number of first- and third-party game studios.

1.6. Runtime Engine Architecture

37

1.6.43 Collision and Physics

Collision detection and rigid body dynamics (known simply as “physics”
in the game development community) are provided by the following well-
known SDKs:

Havok is a popular industrial-strength physics and collision engine.
PhysX is another popular industrial-strength physics and collision en-
gine, available for free download from NVIDIA.

Open Dynamics Engine (ODE) is a well-known open source physics/col-
lision package.

1.6.4.4 Character Animation

A number of commercial animation packages exist, including but certainly
not limited to the following:

Granny. Rad Game Tools” popular Granny toolkit includes robust 3D
model and animation exporters for all the major 3D modeling and ani-
mation packages like Maya, 3D Studio MAX, etc., a runtime library for
reading and manipulating the exported model and animation data, and
a powerful runtime animation system. In my opinion, the Granny SDK
has the best-designed and most logical animation API of any I've seen,
commercial or proprietary, especially its excellent handling of time.
Havok Animation. The line between physics and animation is becoming
increasingly blurred as characters become more and more realistic. The
company that makes the popular Havok physics SDK decided to create
a complimentary animation SDK, which makes bridging the physics-
animation gap much easier than it ever has been.

Edge. The Edge library produced for the PS3 by the ICE team at Naughty
Dog, the Tools and Technology group of Sony Computer Entertainment
America, and Sony’s Advanced Technology Group in Europe includes
a powerful and efficient animation engine and an efficient geometry-
processing engine for rendering.

1.6.4.5 Biomechanical Character Models

Endorphin and Euphoria. These are animation packages that produce
character motion using advanced biomechanical models of realistic hu-
man movement.

As we mentioned previously, the line between character animation and

physics is beginning to blur. Packages like Havok Animation try to marry

38 1. Introduction

physics and animation in a traditional manner, with a human animator pro-
viding the majority of the motion through a tool like Maya and with physics
augmenting that motion at runtime. But recently a firm called Natural Motion
Ltd. has produced a product that attempts to redefine how character motion
is handled in games and other forms of digital media.

Its first product, Endorphin, is a Maya plug-in that permits animators to
run full biomechanical simulations on characters and export the resulting an-
imations as if they had been hand animated. The biomechanical model ac-
counts for center of gravity, the character’s weight distribution, and detailed
knowledge of how a real human balances and moves under the influence of
gravity and other forces.

Its second product, Euphoria, is a real-time version of Endorphin intended
to produce physically and biomechanically accurate character motion at run-
time under the influence of unpredictable forces.

1.6.5 Platform Independence Layer

Most game engines are required to be capable of running on more than one
hardware platform. Companies like Electronic Arts and ActivisionBlizzard
Inc., for example, always target their games at a wide variety of platforms be-
cause it exposes their games to the largest possible market. Typically, the only
game studios that do not target at least two different platforms per game are
first-party studios, like Sony’s Naughty Dog and Insomniac studios. There-
fore, most game engines are architected with a platform independence layer,
like the one shown in Figure 1.20. This layer sits atop the hardware, drivers,
operating system and other third-party software and shields the rest of the
engine from the majority of knowledge of the underlying platform.

By wrapping or replacing the most commonly used standard C library
functions, operating system calls and other foundational application program-
ming interfaces (APIs), the platform independence layer ensures consistent
behavior across all hardware platforms. This is necessary because there is a
good deal of variation across platforms, even among “standardized” libraries
like the standard C library.

Platform Independence Layer

Atomic Data
Types

Collections and
Iterators

Network Transport

Platform Detection Layer (UDP/TCP)

File System Hi-Res Timer Threading Library

Graphics Physics/Coll.
Wrappers Wrapper

Figure 1.20. Platform independence layer.

1.6. Runtime Engine Architecture

39

Core Systems

Module Start-Up " " " . Strings and Debug Printing Localization .
and Shut-Down Assertions H Unit Testing Memory Allocation Math Library Hashed String Ids and Logging Services Movie Player
Parsers (CSV, Profiling / Stats Engine Config Random Number Curves & RTTI/ Reflection Object Handles / Asynchronous Memory Card I/O
XML, etc.) Gathering (INI files etc.) Generator Surfaces Library & Serialization Unique Ids File 110 (Older Consoles)

Figure 1.21. Core engine systems.

1.6.6 Core Systems

Every game engine, and really every large, complex C++ software application,
requires a grab bag of useful software utilities. We'll categorize these under
the label “core systems.” A typical core systems layer is shown in Figure 1.21.
Here are a few examples of the facilities the core layer usually provides:

Assertions are lines of error-checking code that are inserted to catch log-
ical mistakes and violations of the programmer’s original assumptions.
Assertion checks are usually stripped out of the final production build
of the game.

Memory management. Virtually every game engine implements its own
custom memory allocation system(s) to ensure high-speed allocations
and deallocations and to limit the negative effects of memory fragmen-
tation (see Section 5.2.1.4).

Math library. Games are by their nature highly mathematics-intensive.
As such, every game engine has at least one, if not many, math libraries.
These libraries provide facilities for vector and matrix math, quaternion
rotations, trigonometry, geometric operations with lines, rays, spheres,
frusta, etc., spline manipulation, numerical integration, solving systems
of equations and whatever other facilities the game programmers re-
quire.

Custom data structures and algorithms. Unless an engine’s designers de-
cided to rely entirely on a third-party package such as STL, a suite of
tools for managing fundamental data structures (linked lists, dynamic
arrays, binary trees, hash maps, etc.) and algorithms (search, sort, etc.)
is usually required. These are often hand coded to minimize or elimi-
nate dynamic memory allocation and to ensure optimal runtime perfor-
mance on the target platform(s).

A detailed discussion of the most common core engine systems can be

found in Part II.

40

1. Introduction

1.6.7 Resource Manager

Present in every game engine in some form, the resource manager provides a
unified interface (or suite of interfaces) for accessing any and all types of game
assets and other engine input data. Some engines do this in a highly cen-
tralized and consistent manner (e.g., Unreal’s packages, OGRE’s Resource-
Manager class). Other engines take an ad hoc approach, often leaving it up
to the game programmer to directly access raw files on disk or within com-
pressed archives such as Quake’s PAK files. A typical resource manager layer
is depicted in Figure 1.22.

Resources (Game Assets)

3D Model
Resource

Texture
Resource

Game
World/Map

Font
Resource

Collision
Resource

Skeleton
Resource

Material
Resource

Physics
Parameters

‘ etc. ‘

Resource Manager ‘

Figure 1.22. Resource manager.

1.6.8 Rendering Engine

The rendering engine is one of the largest and most complex components of
any game engine. Renderers can be architected in many different ways. There
is no one accepted way to do it, although as we’ll see, most modern rendering
engines share some fundamental design philosophies, driven in large part by
the design of the 3D graphics hardware upon which they depend.

One common and effective approach to rendering engine design is to em-
ploy a layered architecture as follows.

1.6.8.1 Low-Level Renderer

The low-level renderer, shown in Figure 1.23, encompasses all of the raw ren-
dering facilities of the engine. At this level, the design is focused on rendering
a collection of geometric primitives as quickly and richly as possible, without
much regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.

Graphics Device Interface

Graphics SDKs, such as DirectX and OpenGL, require a reasonable amount of
code to be written just to enumerate the available graphics devices, initialize
them, set up render surfaces (back-buffer, stencil buffer, etc.) and so on. This

1.6. Runtime Engine Architecture

4

Skeletal Mesh

Rendering
Low-Level Renderer —‘
Materials & Static & Dynamic
Shaders Lighting Cameras Text & Fonts
I
Primitive Viewports & Texture and Debug Drawing
Submission Virtual Screens Surface Mgmt. (Lines etc.)
Graphics Device Interface

Figure 1.23. Low-level rendering engine.

is typically handled by a component that I'll call the graphics device interface
(although every engine uses its own terminology).

For a PC game engine, you also need code to integrate your renderer with
the Windows message loop. You typically write a “message pump” that ser-
vices Windows messages when they are pending and otherwise runs your
render loop over and over as fast as it can. This ties the game’s keyboard
polling loop to the renderer’s screen update loop. This coupling is undesir-
able, but with some effort it is possible to minimize the dependencies. We'll
explore this topic in more depth later.

Other Renderer Components

The other components in the low-level renderer cooperate in order to collect
submissions of geometric primitives (sometimes called render packets), such as
meshes, line lists, point lists, particles, terrain patches, text strings and what-
ever else you want to draw, and render them as quickly as possible.

The low-level renderer usually provides a viewport abstraction with an as-
sociated camera-to-world matrix and 3D projection parameters, such as field
of view and the location of the near and far clip planes. The low-level renderer
also manages the state of the graphics hardware and the game’s shaders via
its material system and its dynamic lighting system. Each submitted primitive
is associated with a material and is affected by n dynamic lights. The mate-
rial describes the texture(s) used by the primitive, what device state settings
need to be in force, and which vertex and pixel shader to use when rendering
the primitive. The lights determine how dynamic lighting calculations will
be applied to the primitive. Lighting and shading is a complex topic, which
is covered in depth in many excellent books on computer graphics, includ-
ing [14], [44] and [1].

4

1. Introduction

Scene Graph / Culling Optimizations

Spatial Hash (BSP

Tree, kd-Tree, ...) Occlusion & PVS LOD System

Figure 1.24. A typical scene graph/spatial subdivision layer, for culling optimization.

1.6.8.2 Scene Graph/Culling Optimizations

The low-level renderer draws all of the geometry submitted to it, without
much regard for whether or not that geometry is actually visible (other than
back-face culling and clipping triangles to the camera frustum). A higher-
level component is usually needed in order to limit the number of primitives
submitted for rendering, based on some form of visibility determination. This
layer is shown in Figure 1.24.

For very small game worlds, a simple frustum cull (i.e., removing objects
that the camera cannot “see”) is probably all that is required. For larger game
worlds, a more advanced spatial subdivision data structure might be used to
improve rendering efficiency by allowing the potentially visible set (PVS) of
objects to be determined very quickly. Spatial subdivisions can take many
forms, including a binary space partitioning tree, a quadtree, an octree, a kd-
tree or a sphere hierarchy. A spatial subdivision is sometimes called a scene
graph, although technically the latter is a particular kind of data structure and
does not subsume the former. Portals or occlusion culling methods might also
be applied in this layer of the rendering engine.

Ideally, the low-level renderer should be completely agnostic to the type
of spatial subdivision or scene graph being used. This permits different game
teams to reuse the primitive submission code but to craft a PVS determination
system that is specific to the needs of each team’s game. The design of the
OGRE open source rendering engine (http://www.ogre3d.org) is a great ex-
ample of this principle in action. OGRE provides a plug-and-play scene graph
architecture. Game developers can either select from a number of preimple-
mented scene graph designs, or they can provide a custom scene graph im-
plementation.

1.6.8.3 Visual Effects

Modern game engines support a wide range of visual effects, as shown in
Figure 1.25, including:

1.6. Runtime Engine Architecture

43

Visual Effects

Light Mapping &
Dynamic Shadows

HDR Lighting

PRT Lighting,
Subsurf. Scatter

Particle & Decal
Systems

Post Effects

Environment
Mapping

Figure 1.25. Visual effects.

* particle systems (for smoke, fire, water splashes, etc.);

* decal systems (for bullet holes, foot prints, etc.);

¢ light mapping and environment mapping;

¢ dynamic shadows; and

¢ full-screen post effects, applied after the 3D scene has been rendered to

an off-screen buffer.

Some examples of full-screen post effects include:

¢ high dynamic range (HDR) tone mapping and bloom;

¢ full-screen anti-aliasing (FSAA); and

* color correction and color-shift effects, including bleach bypass, satura-

tion and desaturation effects, etc.

It is common for a game engine to have an effects system component that
manages the specialized rendering needs of particles, decals and other visual
effects. The particle and decal systems are usually distinct components of the
rendering engine and act as inputs to the low-level renderer. On the other
hand, light mapping, environment mapping and shadows are usually han-
dled internally within the rendering engine proper. Full-screen post effects
are either implemented as an integral part of the renderer or as a separate

component that operates on the renderer’s output buffers.

1.6.8.4 Front End

Most games employ some kind of 2D graphics overlaid on the 3D scene for

various purposes. These include:

o the game’s heads-up display (HUD);

* in-game menus, a console and/or other development tools, which may or

may not be shipped with the final product; and

44

1. Introduction

Profiling & Debugging

Recording &
Playback

Memory &
Performance Stats

In-Game Menus
or Console

Figure 1.27. Profiling
and debugging tools.

Front End
Heads-Up Display || Full-Motion Video In-Game Cinematics
(HUD) (FMV) (IGC)
In-Game GUI [n-Game Menus Wrappers / Attract
Mode

Figure 1.26. Front end graphics.

® possibly an in-game graphical user interface (GUI), allowing the player to
manipulate his or her character’s inventory, configure units for battle or
perform other complex in-game tasks.

This layer is shown in Figure 1.26. Two-dimensional graphics like these are
usually implemented by drawing textured quads (pairs of triangles) with an
orthographic projection. Or they may be rendered in full 3D, with the quads
bill-boarded so they always face the camera.

We've also included the full-motion video (FMV) system in this layer. This
system is responsible for playing full-screen movies that have been recorded
earlier (either rendered with the game’s rendering engine or using another
rendering package).

A related system is the in-game cinematics (IGC) system. This component
typically allows cinematic sequences to be choreographed within the game it-
self, in full 3D. For example, as the player walks through a city, a conversation
between two key characters might be implemented as an in-game cinematic.
IGCs may or may not include the player character(s). They may be done as a
deliberate cut-away during which the player has no control, or they may be
subtly integrated into the game without the human player even realizing that
an IGC is taking place.

1.6.9 Profiling and Debugging Tools

Games are real-time systems and, as such, game engineers often need to pro-
file the performance of their games in order to optimize performance. In ad-
dition, memory resources are usually scarce, so developers make heavy use
of memory analysis tools as well. The profiling and debugging layer, shown
in Figure 1.27, encompasses these tools and also includes in-game debugging
facilities, such as debug drawing, an in-game menu system or console and
the ability to record and play back gameplay for testing and debugging pur-
poses.

1.6. Runtime Engine Architecture

45

There are plenty of good general-purpose software profiling tools avail-
able, including:

e Intel’s VTune,
e IBM’s Quantify and Purify (part of the PurifyPlus tool suite), and
e Compuware’s Bounds Checker.

However, most game engines also incorporate a suite of custom profiling
and debugging tools. For example, they might include one or more of the
following:

* a mechanism for manually instrumenting the code, so that specific sec-
tions of code can be timed,;

* afacility for displaying the profiling statistics on-screen while the game
is running;

¢ a facility for dumping performance stats to a text file or to an Excel
spreadsheet;

¢ a facility for determining how much memory is being used by the en-
gine, and by each subsystem, including various on-screen displays;

¢ the ability to dump memory usage, high water mark and leakage stats
when the game terminates and/or during gameplay;

* tools that allow debug print statements to be peppered throughout the
code, along with an ability to turn on or off different categories of debug
output and control the level of verbosity of the output; and

¢ the ability to record game events and then play them back. This is tough
to get right, but when done properly it can be a very valuable tool for
tracking down bugs.

The PlayStation 4 provides a powerful core dump facility to aid program-
mers in debugging crashes. The PlayStation 4 is always recording the last 15
seconds of gameplay video, to allow players to share their experiences via the
Share button on the controller. Because of this, the PS4’s core dump facility
automatically provides programmers not only with a complete call stack of
what the program was doing when it crashed, but also with a screenshot of
the moment of the crash and 15 seconds of video footage showing what was
happening just prior to the crash. Core dumps can be automatically uploaded
to the game developer’s servers whenever the game crashes, even after the
game has shipped. These facilities revolutionize the tasks of crash analysis
and repair.

1. Introduction

Ragdoll
Physics
Collision & Physics
Forces & Ray/Shape
Constraints Casting (Queries)
Rigid Bodies Phantoms
Shapes/ Physics/Collision
Collidables World

Figure 1.28. Collision and physics subsystem.

1.6.10 Collision and Physics

Collision detection is important for every game. Without it, objects would
interpenetrate, and it would be impossible to interact with the virtual world
in any reasonable way. Some games also include a realistic or semi-realistic
dynamics simulation. We call this the “physics system” in the game industry,
although the term rigid body dynamics is really more appropriate, because we
are usually only concerned with the motion (kinematics) of rigid bodies and
the forces and torques (dynamics) that cause this motion to occur. This layer
is depicted in Figure 1.28.

Collision and physics are usually quite tightly coupled. This is because
when collisions are detected, they are almost always resolved as part of the
physics integration and constraint satisfaction logic. Nowadays, very few
game companies write their own collision/physics engine. Instead, a third-
party SDK is typically integrated into the engine.

® Havok is the gold standard in the industry today. It is feature-rich and
performs well across the boards.

* PhysX by NVIDIA is another excellent collision and dynamics engine.
It was integrated into Unreal Engine 4 and is also available for free as
a stand-alone product for PC game development. PhysX was originally
designed as the interface to Ageia’s new physics accelerator chip. The
SDK is now owned and distributed by NVIDIA, and the company has
adapted PhysX to run on its latest GPUs.

Open source physics and collision engines are also available. Perhaps the
best-known of these is the Open Dynamics Engine (ODE). For more informa-

1.6. Runtime Engine Architecture

47

tion, see http://www.ode.org. I-Collide, V-Collide and RAPID are other pop-
ular non-commercial collision detection engines. All three were developed
at the University of North Carolina (UNC). For more information, see http://
www.cs.unc.edu/~geom/I_COLLIDE/index.html and http://www.cs.unc.
edu/~geom/V_COLLIDE/index.html.

1.6.11 Animation

Any game that has organic or semi-organic characters (humans, animals, car-
toon characters or even robots) needs an animation system. There are five
basic types of animation used in games:

* sprite/texture animation,

* rigid body hierarchy animation,
¢ skeletal animation,

e vertex animation, and

* morph targets.

Skeletal animation permits a detailed 3D character mesh to be posed by an
animator using a relatively simple system of bones. As the bones move, the
vertices of the 3D mesh move with them. Although morph targets and vertex
animation are used in some engines, skeletal animation is the most prevalent
animation method in games today; as such, it will be our primary focus in this
book. A typical skeletal animation system is shown in Figure 1.29.

You'll notice in Figure 1.15 that the skeletal mesh rendering component
bridges the gap between the renderer and the animation system. There is a
tight cooperation happening here, but the interface is very well defined. The

Figure 1.29. Skeletal animation subsystem.

48

1. Introduction

Human Interface
Devices (HID)

Game-Specific
Interface

Physical Device
110

Figure 130. The
player input/output
system, also known
as the human in-
terface device (HID)
layer.

animation system produces a pose for every bone in the skeleton, and then
these poses are passed to the rendering engine as a palette of matrices. The
renderer transforms each vertex by the matrix or matrices in the palette, in
order to generate a final blended vertex position. This process is known as
skinning.

There is also a tight coupling between the animation and physics systems
when rag dolls are employed. A rag doll is a limp (often dead) animated char-
acter, whose bodily motion is simulated by the physics system. The physics
system determines the positions and orientations of the various parts of the
body by treating them as a constrained system of rigid bodies. The animation
system calculates the palette of matrices required by the rendering engine in
order to draw the character on-screen.

1.6.12 Human Interface Devices (HID)

Every game needs to process input from the player, obtained from various
human interface devices (HIDs) including:

¢ the keyboard and mouse,
* ajoypad, or

* other specialized game controllers, like steering wheels, fishing rods,
dance pads, the Wiimote, etc.

We sometimes call this component the player I/O component, because
we may also provide output to the player through the HID, such as force-
feedback/ rumble on a joypad or the audio produced by the Wiimote. A typ-
ical HID layer is shown in Figure 1.30.

The HID engine component is sometimes architected to divorce the low-
level details of the game controller(s) on a particular hardware platform from
the high-level game controls. It massages the raw data coming from the
hardware, introducing a dead zone around the center point of each joypad
stick, debouncing button-press inputs, detecting button-down and button-
up events, interpreting and smoothing accelerometer inputs (e.g., from the
PlayStation Dualshock controller) and more. It often provides a mechanism
allowing the player to customize the mapping between physical controls and
logical game functions. It sometimes also includes a system for detecting
chords (multiple buttons pressed together), sequences (buttons pressed in se-
quence within a certain time limit) and gestures (sequences of inputs from the
buttons, sticks, accelerometers, etc.).

1.6. Runtime Engine Architecture

49

1.6.13 Audio

Audio is just as important as graphics in any game engine. Unfortunately, au-
dio often gets less attention than rendering, physics, animation, Al and game-
play. Case in point: Programmers often develop their code with their speak-
ers turned off! (In fact, I've known quite a few game programmers who didn’t
even have speakers or headphones.) Nonetheless, no great game is complete
without a stunning audio engine. The audio layer is depicted in Figure 1.31.

Audio engines vary greatly in sophistication. Quake’s audio engine is
pretty basic, and game teams usually augment it with custom functionality
or replace it with an in-house solution. Unreal Engine 4 provides a reasonably
robust 3D audio rendering engine (discussed in detail in [40]), although its fea-
ture set is limited and many game teams will probably want to augment and
customize it to provide advanced game-specific features. For DirectX plat-
forms (PC, Xbox 360, Xbox One), Microsoft provides an excellent audio tool
suite called XACT, supported at runtime by their feature-rich XAudio2 and
X3DAudio APIs. Electronic Arts has developed an advanced, high-powered
audio engine internally called SoundR!OT. In conjunction with first-party stu-
dios like Naughty Dog, Sony Computer Entertainment America (SCEA) pro-
vides a powerful 3D audio engine called Scream, which has been used on a
number of PS3 titles including Naughty Dog’s Uncharted 3: Drake’s Deception
and The Last of Us. However, even if a game team uses a preexisting audio
engine, every game requires a great deal of custom software development,
integration work, fine-tuning and attention to detail in order to produce high-
quality audio in the final product.

1.6.14 Online Multiplayer/Networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basic flavors:

o Single-screen multiplayer. Two or more human interface devices (joypads,
keyboards, mice, etc.) are connected to a single arcade machine, PC or
console. Multiple player characters inhabit a single virtual world, and a
single camera keeps all player characters in frame simultaneously. Ex-
amples of this style of multiplayer gaming include Smash Brothers, Lego
Star Wars and Gauntlet.

e Split-screen multiplayer. Multiple player characters inhabit a single vir-
tual world, with multiple HIDs attached to a single game machine, but
each with its own camera, and the screen is divided into sections so that
each player can view his or her character.

Audio

DSP/Effects

3D Audio Model

Audio Playback /
Management

Figure 131. Audio
subsystem.

50

1. Introduction

Online Multiplayer

Match-Making &
Game Mgmt.

Object Authority
Policy

Game State
Replication

Figure 1.32. On-
line multiplayer net-
working subsystem.

® Networked multiplayer. Multiple computers or consoles are networked
together, with each machine hosting one of the players.

* Massively multiplayer online games (MMOG). Literally hundreds of thou-
sands of users can be playing simultaneously within a giant, persistent,
online virtual world hosted by a powerful battery of central servers.

The multiplayer networking layer is shown in Figure 1.32.

Multiplayer games are quite similar in many ways to their single-player
counterparts. However, support for multiple players can have a profound
impact on the design of certain game engine components. The game world
object model, renderer, human input device system, player control system
and animation systems are all affected. Retrofitting multiplayer features into
a preexisting single-player engine is certainly not impossible, although it can
be a daunting task. Still, many game teams have done it successfully. That
said, it is usually better to design multiplayer features from day one, if you
have that luxury.

It is interesting to note that going the other way—converting a multiplayer
game into a single-player game—is typically trivial. In fact, many game en-
gines treat single-player mode as a special case of a multiplayer game, in
which there happens to be only one player. The Quake engine is well known
for its client-on-top-of-server mode, in which a single executable, running on a
single PC, acts both as the client and the server in single-player campaigns.

1.6.15 Gameplay Foundation Systems

The term gameplay refers to the action that takes place in the game, the rules
that govern the virtual world in which the game takes place, the abilities of the
player character(s) (known as player mechanics) and of the other characters and
objects in the world, and the goals and objectives of the player(s). Gameplay
is typically implemented either in the native language in which the rest of the
engine is written or in a high-level scripting language—or sometimes both. To
bridge the gap between the gameplay code and the low-level engine systems
that we’ve discussed thus far, most game engines introduce a layer that I'll
call the gameplay foundations layer (for lack of a standardized name). Shown
in Figure 1.33, this layer provides a suite of core facilities, upon which game-
specific logic can be implemented conveniently.

1.6.15.1 Game Worlds and Object Models

The gameplay foundations layer introduces the notion of a game world, con-
taining both static and dynamic elements. The contents of the world are usu-
ally modeled in an object-oriented manner (often, but not always, using an

1.6. Runtime Engine Architecture

Gameplay Foundations

High-Level Game Flow System/FSM

Scripting System

Figure 1.33. Gameplay foundation systems.

object-oriented programming language). In this book, the collection of object
types that make up a game is called the game object model. The game object
model provides a real-time simulation of a heterogeneous collection of objects
in the virtual game world.

Typical types of game objects include:

* static background geometry, like buildings, roads, terrain (often a spe-
cial case), etc.;

* dynamic rigid bodies, such as rocks, soda cans, chairs, etc.;
* player characters (PC);

¢ non-player characters (NPC);

* weapons;

* projectiles;

¢ vehicles;

¢ lights (which may be present in the dynamic scene at runtime, or only
used for static lighting offline);

® cameras,

and the list goes on.

The game world model is intimately tied to a software object model, and
this model can end up pervading the entire engine. The term software object
model refers to the set of language features, policies and conventions used to
implement a piece of object-oriented software. In the context of game engines,
the software object model answers questions, such as:

Static World Dynamic Game Real-Time Agent- Event/Messaging World Loading /
Elements Object Model Based Simulation System Streaming
Hierarchical
Object Attachment

52

1. Introduction

* Is your game engine designed in an object-oriented manner?
e What language will you use? C? C++? Java? OCaml?

¢ How will the static class hierarchy be organized? One giant monolithic
hierarchy? Lots of loosely coupled components?

¢ Will you use templates and policy-based design, or traditional polymor-
phism?

¢ How are objects referenced? Straight old pointers? Smart pointers?
Handles?

¢ How will objects be uniquely identified? By address in memory only?
By name? By a global unique identifier (GUID)?

¢ How are the lifetimes of game objects managed?
¢ How are the states of the game objects simulated over time?

We'll explore software object models and game object models in consider-
able depth in Section 15.2.

1.6.15.2 Event System

Game objects invariably need to communicate with one another. This can
be accomplished in all sorts of ways. For example, the object sending the
message might simply call a member function of the receiver object. An event-
driven architecture, much like what one would find in a typical graphical user
interface, is also a common approach to inter-object communication. In an
event-driven system, the sender creates a little data structure called an event
or message, containing the message’s type and any argument data that are to
be sent. The event is passed to the receiver object by calling its event handler
function. Events can also be stored in a queue for handling at some future
time.

1.6.15.3 Scripting System

Many game engines employ a scripting language in order to make devel-
opment of game-specific gameplay rules and content easier and more rapid.
Without a scripting language, you must recompile and relink your game ex-
ecutable every time a change is made to the logic or data structures used in
the engine. But when a scripting language is integrated into your engine,
changes to game logic and data can be made by modifying and reloading the
script code. Some engines allow script to be reloaded while the game contin-
ues to run. Other engines require the game to be shut down prior to script
recompilation. But either way, the turnaround time is still much faster than it
would be if you had to recompile and relink the game’s executable.

1.6. Runtime Engine Architecture

53

1.6.15.4 Artificial Intelligence Foundations

Traditionally, artificial intelligence has fallen squarely into the realm of game-
specific software—it was usually not considered part of the game engine per
se. More recently, however, game companies have recognized patterns that
arise in almost every Al system, and these foundations are slowly starting to
fall under the purview of the engine proper.

A company called Kynogon developed a middleware SDK named Ky-
napse, which provided much of the low-level technology required to build
commercially viable game AL This technology was purchased by Autodesk
and has been superseded by a totally redesigned Al middleware package
called Gameware Navigation, designed by the same engineering team that in-
vented Kynapse. This SDK provides low-level Al building blocks such as nav
mesh generation, path finding, static and dynamic object avoidance, identifi-
cation of vulnerabilities within a play space (e.g., an open window from which
an ambush could come) and a well-defined interface between Al and anima-
tion. Autodesk also offers a visual programming system and runtime engine
called Gameware Cognition, which together with Gameware Navigation aims
to make building ambitious game Al systems easier than ever.

1.6.16 Game-Specific Subsystems

On top of the gameplay foundation layer and the other low-level engine com-
ponents, gameplay programmers and designers cooperate to implement the
features of the game itself. Gameplay systems are usually numerous, highly
varied and specific to the game being developed. As shown in Figure 1.34,
these systems include, but are certainly not limited to the mechanics of the
player character, various in-game camera systems, artificial intelligence for
the control of non-player characters, weapon systems, vehicles and the list
goes on. If a clear line could be drawn between the engine and the game, it

GAME-SPECIFIC SUBSYSTEMS

‘ Weapons ‘

‘ Power-Ups

Vehicles ‘

‘ Puzzles ‘

‘ etc.

Game-Specific Rendering

etc.

Player Mechanics ‘

Game Cameras

Al

State Machine &
Animation

Camera-Relative ‘ Fixed Cameras

Controls (HID)

Scripted/Animated
Cameras

Goals & Decision-
Making

Actions
(Engine Interface)

Water Simulation
& Rendering

Terrain Rendering

Collision Manifold

Player-Follow

Movement
Camera

Debug Fly-
Through Cam

Sight Traces &
Perception

Path Finding (A*)

Figure 1.34. Game-specific subsystems.

54

1. Introduction

would lie between the game-specific subsystems and the gameplay founda-
tions layer. Practically speaking, this line is never perfectly distinct. At least
some game-specific knowledge invariably seeps down through the gameplay
foundations layer and sometimes even extends into the core of the engine
itself.

1.7 Tools and the Asset Pipeline

Any game engine must be fed a great deal of data, in the form of game assets,
configuration files, scripts and so on. Figure 1.35 depicts some of the types of
game assets typically found in modern game engines. The thicker dark-grey
arrows show how data flows from the tools used to create the original source
assets all the way through to the game engine itself. The thinner light-grey
arrows show how the various types of assets refer to or use other assets.

1.7.1 Digital Content Creation Tools

Games are multimedia applications by nature. A game engine’s input data
comes in a wide variety of forms, from 3D mesh data to texture bitmaps to
animation data to audio files. All of this source data must be created and
manipulated by artists. The tools that the artists use are called digital content
creation (DCC) applications.

A DCC application is usually targeted at the creation of one particular type
of data—although some tools can produce multiple data types. For example,
Autodesk’s Maya and 3ds Max are prevalent in the creation of both 3D meshes
and animation data. Adobe’s Photoshop and its ilk are aimed at creating and
editing bitmaps (textures). SoundForge is a popular tool for creating audio
clips. Some types of game data cannot be created using an off-the-shelf DCC
app. For example, most game engines provide a custom editor for laying
out game worlds. Still, some engines do make use of preexisting tools for
game world layout. I've seen game teams use 3ds Max or Maya as a world
layout tool, with or without custom plug-ins to aid the user. Ask most game
developers, and they’ll tell you they can remember a time when they laid
out terrain height fields using a simple bitmap editor, or typed world layouts
directly into a text file by hand. Tools don’t have to be pretty—game teams
will use whatever tools are available and get the job done. That said, tools
must be relatively easy to use, and they absolutely must be reliable, if a game
team is going to be able to develop a highly polished product in a timely
manner.

1.7. Tools and the Asset Pipeline

55

Digital Content Creation (DCC) Tools

Custom Material
Plug-In

| Game Obj.
Template

Mesh Exporter
Skeletal Hierarchy
Exporter

Skel.
Hierarchy

Animation [
Curves

Animation
Exporter

Photoshop

TGA
Texture

Animation Tree
Editor

DXT Compression

Houdini/Other Particle Tool

Particle
System

. ,/'
Audio e
,/
e
yd

Manager
Tool

Sound Forge or Audio Tool

Figure 1.35. Tools and the asset pipeline.

1.7.2 The Asset Conditioning Pipeline

The data formats used by digital content creation (DCC) applications are rarely
suitable for direct use in-game. There are two primary reasons for this.

1.

The DCC app’s in-memory model of the data is usually much more com-
plex than what the game engine requires. For example, Maya stores a di-
rected acyclic graph (DAG) of scene nodes, with a complex web of inter-
connections. It stores a history of all the edits that have been performed
on the file. It represents the position, orientation and scale of every ob-
ject in the scene as a full hierarchy of 3D transformations, decomposed
into translation, rotation, scale and shear components. A game engine

Asset
Conditioning
Pipeline

'

GAME

56

1. Introduction

typically only needs a tiny fraction of this information in order to render
the model in-game.

2. The DCC application’s file format is often too slow to read at runtime,
and in some cases it is a closed proprietary format.

Therefore, the data produced by a DCC app is usually exported to a more
accessible standardized format, or a custom file format, for use in-game.

Once data has been exported from the DCC app, it often must be further
processed before being sent to the game engine. And if a game studio is ship-
ping its game on more than one platform, the intermediate files might be pro-
cessed differently for each target platform. For example, 3D mesh data might
be exported to an intermediate format, such as XML, JSON or a simple binary
format. Then it might be processed to combine meshes that use the same ma-
terial, or split up meshes that are too large for the engine to digest. The mesh
data might then be organized and packed into a memory image suitable for
loading on a specific hardware platform.

The pipeline from DCC app to game engine is sometimes called the asset
conditioning pipeline (ACP). Every game engine has this in some form.

1.7.2.1 3D Model/Mesh Data

The visible geometry you see in a game is typically constructed from triangle
meshes. Some older games also make use of volumetric geometry known as
brushes. We'll discuss each type of geometric data briefly below. For an in-
depth discussion of the techniques used to describe and render 3D geometry,
see Chapter 10.

3D Models (Meshes)

A mesh is a complex shape composed of triangles and vertices. Renderable
geometry can also be constructed from quads or higher-order subdivision sur-
faces. But on today’s graphics hardware, which is almost exclusively geared
toward rendering rasterized triangles, all shapes must eventually be trans-
lated into triangles prior to rendering.

A mesh typically has one or more materials applied to it in order to define
visual surface properties (color, reflectivity, bumpiness, diffuse texture, etc.).
In this book, I will use the term “mesh” to refer to a single renderable shape,
and “model” to refer to a composite object that may contain multiple meshes,
plus animation data and other metadata for use by the game.

Meshes are typically created in a 3D modeling package such as 3ds Max,
Maya or Softlmage. A powerful and popular tool by Pixologic called ZBrush

1.7. Tools and the Asset Pipeline

57

allows ultra high-resolution meshes to be built in a very intuitive way and
then down-converted into a lower-resolution model with normal maps to ap-
proximate the high-frequency detail.

Exporters must be written to extract the data from the digital content cre-
ation (DCC) tool (Maya, Max, etc.) and store it on disk in a form that is di-
gestible by the engine. The DCC apps provide a host of standard or semi-
standard export formats, although none are perfectly suited for game devel-
opment (with the possible exception of COLLADA). Therefore, game teams
often create custom file formats and custom exporters to go with them.

Brush Geometry

Brush geometry is defined as a collection of convex hulls, each of which is de-
fined by multiple planes. Brushes are typically created and edited directly in
the game world editor. This is essentially an “old school” approach to creating
renderable geometry, but it is still used in some engines.

Pros:

¢ fast and easy to create;

* accessible to game designers—often used to “block out” a game level for
prototyping purposes;

¢ can serve both as collision volumes and as renderable geometry.

Cons:

¢ Jow-resolution;
e difficult to create complex shapes;

* cannot support articulated objects or animated characters.
1.7.2.2 Skeletal Animation Data

A skeletal mesh is a special kind of mesh that is bound to a skeletal hierarchy for
the purposes of articulated animation. Such a mesh is sometimes called a skin
because it forms the skin that surrounds the invisible underlying skeleton.
Each vertex of a skeletal mesh contains a list of indices indicating to which
joint(s) in the skeleton it is bound. A vertex usually also includes a set of joint
weights, specifying the amount of influence each joint has on the vertex.

In order to render a skeletal mesh, the game engine requires three distinct
kinds of data:

1. the mesh itself,

2. the skeletal hierarchy (joint names, parent-child relationships and the
base pose the skeleton was in when it was originally bound to the mesh),
and

58

1. Introduction

3. one or more animation clips, which specify how the joints should move
over time.

The mesh and skeleton are often exported from the DCC application as a
single data file. However, if multiple meshes are bound to a single skeleton,
then it is better to export the skeleton as a distinct file. The animations are usu-
ally exported individually, allowing only those animations which are in use
to be loaded into memory at any given time. However, some game engines
allow a bank of animations to be exported as a single file, and some even lump
the mesh, skeleton and animations into one monolithic file.

An unoptimized skeletal animation is defined by a stream of 4 x 3 matrix
samples, taken at a frequency of at least 30 frames per second, for each of the
joints in a skeleton (of which there can be 500 or more for a realistic humanoid
character). Thus, animation data is inherently memory-intensive. For this
reason, animation data is almost always stored in a highly compressed format.
Compression schemes vary from engine to engine, and some are proprietary.
There is no one standardized format for game-ready animation data.

1.7.2.3 Audio Data

Audio clips are usually exported from Sound Forge or some other audio pro-
duction tool in a variety of formats and at a number of different data sam-
pling rates. Audio files may be in mono, stereo, 5.1, 7.1 or other multi-channel
configurations. Wave files (.wav) are common, but other file formats such as
PlayStation ADPCM files (.vag) are also commonplace. Audio clips are often
organized into banks for the purposes of organization, easy loading into the
engine, and streaming.

1.7.2.4 Particle Systems Data

Modern games make use of complex particle effects. These are authored by
artists who specialize in the creation of visual effects. Third-party tools, such
as Houdini, permit film-quality effects to be authored; however, most game
engines are not capable of rendering the full gamut of effects that can be cre-
ated with Houdini. For this reason, many game companies create a custom
particle effect editing tool, which exposes only the effects that the engine ac-
tually supports. A custom tool might also let the artist see the effect exactly as
it will appear in-game.

1.7.3 The World Editor

The game world is where everything in a game engine comes together. To my
knowledge, there are no commercially available game world editors (i.e., the

1.7. Tools and the Asset Pipeline

59

game world equivalent of Maya or Max). However, a number of commercially
available game engines provide good world editors:

¢ Some variant of the Radiant game editor is used by most game engines
based on Quake technology.

e The Half-Life 2 Source engine provides a world editor called Hamimer.

e UnrealEd is the Unreal Engine’s world editor. This powerful tool also
serves as the asset manager for all data types that the engine can con-
sume.

Writing a good world editor is difficult, but it is an extremely important
part of any good game engine.

1.7.4 The Resource Database

Game engines deal with a wide range of asset types, from renderable geom-
etry to materials and textures to animation data to audio. These assets are
defined in part by the raw data produced by the artists when they use a tool
like Maya, Photoshop or SoundForge. However, every asset also carries with
it a great deal of metadata. For example, when an animator authors an anima-
tion clip in Maya, the metadata provides the asset conditioning pipeline, and
ultimately the game engine, with the following information:

* A unique id that identifies the animation clip at runtime.

* The name and directory path of the source Maya (.ma or .mb) file.

¢ The frame range—on which frame the animation begins and ends.

* Whether or not the animation is intended to loop.

* The animator’s choice of compression technique and level. (Some assets
can be highly compressed without noticeably degrading their quality,
while others require less or no compression in order to look right in-
game.)

Every game engine requires some kind of database to manage all of the
metadata associated with the game’s assets. This database might be imple-
mented using an honest-to-goodness relational database such as MySQL or
Oracle, or it might be implemented as a collection of text files, managed by
a revision control system such as Subversion, Perforce or Git. We'll call this
metadata the resource database in this book.

No matter in what format the resource database is stored and managed,
some kind of user interface must be provided to allow users to author and
edit the data. At Naughty Dog, we wrote a custom GUI in C# called Builder
for this purpose. For more information on Builder and a few other resource
database user interfaces, see Section 6.2.1.3.

60

1. Introduction

Run-Time Engine

Core Systems

Tools and World Builder

Platform Independence Layer

3rd Party SDKs

Figure 1.36. Stand-alone tools architecture.

1.7.5 Some Approaches to Tool Architecture

A game engine’s tool suite may be architected in any number of ways. Some
tools might be stand-alone pieces of software, as shown in Figure 1.36. Some
tools may be built on top of some of the lower layers used by the runtime en-
gine, as Figure 1.37 illustrates. Some tools might be built into the game itself.
For example, Quake- and Unreal-based games both boast an in-game console
that permits developers and “modders” to type debugging and configuration
commands while running the game. Finally, web-based user interfaces are
becoming more and more popular for certain kinds of tools.

As an interesting and unique example, Unreal’s world editor and asset
manager, UnrealEd, is built right into the runtime game engine. To run the
editor, you run your game with a command-line argument of “editor.” This
unique architectural style is depicted in Figure 1.38. It permits the tools to
have total access to the full range of data structures used by the engine and
avoids a common problem of having to have two representations of every
data structure—one for the runtime engine and one for the tools. It also means
that running the game from within the editor is very fast (because the game
is actually already running). Live in-game editing, a feature that is normally
very tricky to implement, can be developed relatively easily when the editor
is a part of the game. However, an in-engine editor design like this does have
its share of problems. For example, when the engine is crashing, the tools

1.7. Tools and the Asset Pipeline

6l

Run-Time Engine

Tools and World Builder

Core Systems

Platform Independence Layer

3rd Party SDKs

Figure 1.37. Tools built on a framework shared with the game.

become unusable as well. Hence a tight coupling between engine and asset

creation tools can tend to slow down production.

World Builder

Run-Time Engine

Core Systems

Platform Independence Layer

Other Tools

3rd Party SDKs

Figure 1.38. UnrealEngine’s tool architecture.

62

1. Introduction

1.7.5.1 Web-Based User Interfaces

Web-based user interfaces are quickly becoming the norm for certain kinds of
game development tools. At Naughty Dog, we use a number of web-based
Uls. Naughty Dog’s localization tool serves as the front-end portal into our
localization database. Tasker is the web-based interface used by all Naughty
Dog employees to create, manage, schedule, communicate and collaborate on
game development tasks during production. A web-based interface known
as Connector also serves as our window into the various streams of debugging
information that are emitted by the game engine at runtime. The game spits
out its debug text into various named channels, each associated with a differ-
ent engine system (animation, rendering, Al, sound, etc.) These data streams
are collected by a lightweight Redis database. The browser-based Connector
interface allows users to view and filter this information in a convenient way.

Web-based Uls offer a number of advantages over stand-alone GUI appli-
cations. For one thing, web apps are typically easier and faster to develop
and maintain than a stand-alone app written in a language like Java, C# or
C++. Web apps require no special installation—all the user needs is a com-
patible web browser. Updates to a web-based interface can be pushed out to
the users without the need for an installation step—they need only refresh or
restart their browser to receive the update. Web interfaces also force us to de-
sign our tools using a client-server architecture. This opens up the possibility
of distributing our tools to a wider audience. For example, Naughty Dog’s
localization tool is available directly to outsourcing partners around the globe
who provide language translation services to us. Stand-alone tools still have
their place of course, especially when specialized GUIs such as 3D visualiza-
tion are required. But if your tool only needs to present the user with editable
forms and tabular data, a web-based tool may be your best bet.

2
Tools of the Trade

B efore we embark on our journey across the fascinating landscape of game
engine architecture, it is important that we equip ourselves with some ba-
sic tools and provisions. In the next two chapters, we will review the software
engineering concepts and practices that we will need during our voyage. In
Chapter 2, we’ll explore the tools used by the majority of professional game
engineers. Then in Chapter 3, we'll round out our preparations by reviewing
some key topics in the realms of object-oriented programming, design pat-
terns and large-scale C++ programming,.

Game development is one of the most demanding and broad areas of soft-
ware engineering, so believe me, we’ll want to be well equipped if we are to
safely navigate the sometimes-treacherous terrain we’ll be covering. For some
readers, the contents of this chapter and the next will be very familiar. How-
ever, I encourage you not to skip these chapters entirely. I hope that they will
serve as a pleasant refresher; and who knows, you might even pick up a new
trick or two.

2.1 Version Control

A version control system is a tool that permits multiple users to work on a
group of files collectively. It maintains a history of each file so that changes

63

64

2. Tools of the Trade

can be tracked and reverted if necessary. It permits multiple users to mod-
ify files—even the same file—simultaneously, without everyone stomping on
each other’s work. Version control gets its name from its ability to track the
version history of files. It is sometimes called source control, because it is pri-
marily used by computer programmers to manage their source code. How-
ever, version control can be used for other kinds of files as well. Version
control systems are usually best at managing text files, for reasons we will
discover below. However, many game studios use a single version control
system to manage both source code files (which are text) and game assets like
textures, 3D meshes, animations and audio files (which are usually binary).

2.1.1 ' Why Use Version Control?

Version control is crucial whenever software is developed by a team of multi-
ple engineers. Version control

e provides a central repository from which engineers can share source
code;

* keeps a history of the changes made to each source file;

¢ provides mechanisms allowing specific versions of the code base to be
tagged and later retrieved; and

* permits versions of the code to be branched off from the main devel-
opment line, a feature often used to produce demos or make patches to
older versions of the software.

A source control system can be useful even on a single-engineer project.
Although its multiuser capabilities won't be relevant, its other abilities, such
as maintaining a history of changes, tagging versions, creating branches for
demos and patches, tracking bugs, etc., are still invaluable.

2.1.2 Common Version Control Systems

Here are the most common source control systems you'll probably encounter
during your career as a game engineer.

e SCCS and RCS. The Source Code Control System (SCCS) and the Revi-
sion Control System (RCS) are two of the oldest version control systems.
Both employ a command-line interface. They are prevalent primarily on
UNIX platforms.

* CVS. The Concurrent Version System (CVS) is a heavy-duty professional-
grade command-line-based source control system, originally built on

2.1. Version Control

65

top of RCS (but now implemented as a stand-alone tool). CVS is preva-
lent on UNIX systems but is also available on other development plat-
forms such as Microsoft Windows. It is open source and licensed under
the Gnu General Public License (GPL). CVSNT (also known as WinCVS)
is a native Windows implementation that is based on, and compatible
with, CVS.

Subversion. Subversion is an open source version control system aimed
at replacing and improving upon CVS. Because it is open source and
hence free, it is a great choice for individual projects, student projects
and small studios.

Git. This is an open source revision control system that has been used for
many venerable projects, including the Linux kernel. In the git develop-
ment model, the programmer makes changes to files and commits the
changes to a branch. The programmer can then merge his changes into
any other code branch quickly and easily, because git “knows” how to
rewind a sequence of diffs and reapply them onto a new base revision—
a process git calls rebasing. The net result is a revision control system that
is highly efficient and fast when dealing with multiple code branches.
More information on git can be found at http://git-scm.com/.

Perforce. Perforce is a professional-grade source control system, with
both text-based and GUI interfaces. One of Perforce’s claims to fame is
its concept of change lists. A change list is a collection of source files that
have been modified as a logical unit. Change lists are checked into the
repository atomically—either the entire change list is submitted, or none
of it is. Perforce is used by many game companies, including Naughty
Dog and Electronic Arts.

NxN Alienbrain. Alienbrain is a powerful and feature-rich source control
system designed explicitly for the game industry. Its biggest claim to
fame is its support for very large databases containing both text source
code files and binary game art assets, with a customizable user interface
that can be targeted at specific disciplines such as artists, producers or
programmers.

ClearCase. ClearCase is a professional-grade source control system aimed
at very large-scale software projects. It is powerful and employs a unique
user interface that extends the functionality of Windows Explorer. I
haven’t seen ClearCase used much in the game industry, perhaps be-
cause it is one of the more expensive version control systems.

Microsoft Visual SourceSafe. SourceSafe is a lightweight source control
package that has been used successfully on some game projects.

66

2. Tools of the Trade

2.1.3 Overview of Subversion and TortoiseSVN

I'have chosen to highlight Subversion in this book for a few reasons. First off,
it’s free, which is always nice. It works well and is reliable, in my experience.
A Subversion central repository is quite easy to set up, and as we’ll see, there
are already a number of free repository servers out there if you don’t want
to go to the trouble of setting one up yourself. There are also a number of
good Windows and Mac Subversion clients, such as the freely available Tor-
toiseSVN for Windows. So while Subversion may not be the best choice for a
large commercial project (I personally prefer Perforce for that purpose), I find
it perfectly suited to small personal and educational projects. Let’s take a look
at how to set up and use Subversion on a Microsoft Windows PC development
platform. As we do so, we'll review core concepts that apply to virtually any
version control system.

Subversion, like most other version control systems, employs a client-server
architecture. The server manages a central repository, in which a version-
controlled directory hierarchy is stored. Clients connect to the server and re-
quest operations, such as checking out the latest version of the directory tree,
committing new changes to one or more files, tagging revisions, branching the
repository and so on. We won't discuss setting up a server here; we’ll assume
you have a server, and instead we will focus on setting up and using the client.
You can learn how to set up a Subversion server by reading Chapter 6 of [38].
However, you probably will never need to do so, because you can always find
free Subversion servers. For example, Google provides free Subversion code
hosting at http://code.google.com/.

2.1.4 Setting up a Code Repository on Google

The easiest way to get started with Subversion is to visit http://code.google.
com/ and set up a free Subversion repository. Create a Google user name
and password if you don’t already have one, then navigate to Project Host-
ing under Developer Resources (see Figure 2.1). Click “Create a new project,”
then enter a suitable unique project name, like “mygoogleusername-code.” You
can enter a summary and/or description if you like, and you can even pro-
vide tags so that other users all over the world can search for and find your
repository. Click the “Create Project” button and you're off to the races.

Once you've created your repository, you can administer it on the Google
Code website. You can add and remove users, control options and perform
a wealth of advanced tasks. But all you really need to do next is set up a
Subversion client and start using your repository.

2.1. Version Control

67

Googlecode =

Google
(\ De;velopers
Le

ing for Google APIs and Tools?
Search Projects
s now the place o find all Google developer documentation

Explore project labels:

developers.google.com

h JavaSerpt

i
ge

‘mv
B
ﬁc

CPusPls MySQ

E
i
g

©Google - Google Developers - Terms of Senvice - Privacy Policy - Site Directory

Googla Code offered n- English - Espafiol - FIAGSE - 1201 - Portugués - Pycciui - 7 (RIfK) - (88

Figure 2.1. Google Code home page, Project Hosting link.

2.1.5 Installing TortoiseSVN

TortoiseSVN is a popular front end for Subversion. It extends the function-
ality of the Microsoft Windows Explorer via a convenient right-click menu
and overlay icons to show you the status of your version-controlled files and
folders.

To get TortoiseSVN, visit http://tortoisesvn.tigris.org/. Download the lat-
est version from the download page. Install it by double-clicking the .msi file
that you've downloaded and following the installation wizard’s instructions.

Once TortoiseSVN is installed, you can go to any folder in Windows Ex-
plorer and right-click—TortoiseSVN’s menu extensions should now be visi-
ble. To connect to an existing code repository (such as one you created on
Google Code), create a folder on your local hard disk and then right-click and
select “SVN Checkout....” The dialog shown in Figure 2.2 will appear. In
the “URL of repository” field, enter your repository’s URL. If you are using
Google Code, it should be https://myprojectname.googlecode.com/svn/trunk,
where myprojectname is whatever you named your project when you first cre-
ated it (e.g., “mygoogleusername-code”).

If you forget the URL of your repository, just log in to http://code.google.
com/, go to “Project Hosting” as before, sign in by clicking the “Sign in” link
in the upper right-hand corner of the screen, and then click the Settings link,
also found in the upper right-hand corner of the screen. Click the “My Pro-
file” tab, and you should see your project listed there. Your project’s URL
is https://myprojectname.googlecode.com/svn/trunk, where myprojectname is
whatever name you see listed on the “My Profile” tab.

68

2. Tools of the Trade

@ Checkout =
v]
C:\Users'jgregory\Documents\Projects\gea2-test-trunk E] 4" Authentication M
Multiple, independent working copies
<https://gea2-test.googlecode. com:443 > Google Code
Subversion Repository
z)
= Requests a username and a password
Username: jason@gameenginebook. com
Password: [ITTTTTTITTT]
Show log
[OK] [Cancel] [Help] [OK] [Cancel]
Figure 2.2. TortoiseSVN initial check-out dialog. Figure 2.3. TortoiseSVN user authentication dialog.

You should now see the dialog shown in Figure 2.3. The user name should
be your Google login name. The password is not your Google login pass-
word—it is an automatically generated password that can be obtained by
signing in to your account on Goggle’s “Project Hosting” page and clicking
on the “Settings” link. (See above for details.) Checking the “Save authenti-
cation” option on this dialog allows you to use your repository without ever
having to log in again. Only select this option if you are working on your own
personal machine—never on a machine that is shared by many users.

Once you've authenticated your user name, TortoiseSVN will download
(“check out”) the entire contents of your repository to your local disk. If you
have just set up your repository, this will be ...nothing! The folder you cre-
ated will still be empty. But now it is connected to your Subversion repository
on Google (or wherever your server is located). If you refresh your Windows
Explorer window (hit F5), you should now see a little green and white check-
mark on your folder. This icon indicates that the folder is connected to a Sub-
version repository via TortoiseSVN and that the local copy of the repository is
up to date.

2.1.6 File Versions, Updating and Committing

As we’ve seen, one of the key purposes of any source control system like Sub-
version is to allow multiple programmers to work on a single software code
base by maintaining a central repository or “master” version of all the source
code on a server. The server maintains a version history for each file, as shown

VAR

Version Control

69

Foo.cpp (version 4)

A

Foo.cpp (version 3) Bar.cpp (version 3)
Foo.cpp (local edits)

A A v

Figure 2.4. File version histories.

in Figure 2.4. This feature is crucial to large-scale multiprogrammer software
development. For example, if someone makes a mistake and checks in code
that “breaks the build,” you can easily go back in time to undo those changes
(and check the log to see who the culprit was!). You can also grab a snap-
shot of the code as it existed at any point in time, allowing you to work with,
demonstrate or patch previous versions of the software.

Each programmer gets a local copy of the code on his or her machine. In
the case of TortoiseSVN, you obtain your initial working copy by “checking
out” the repository, as described above. Periodically you should update your
local copy to reflect any changes that may have been made by other program-
mers. You do this by right-clicking on a folder and selecting “SVN Update”
from the pop-up menu.

You can work on your local copy of the code base without affecting the
other programmers on the team (Figure 2.5). When you are ready to share
your changes with everyone else, you commit your changes to the repository
(also known as submitting or checking in). You do this by right-clicking on the
folder you want to commit and selecting “SVN Commit...” from the pop-up
menu. You will get a dialog like the one shown in Figure 2.6, asking you to
confirm the changes.

During a commit operation, Subversion generates a diff between your lo-
cal version of each file and the latest version of that same file in the repository.
The term “diff” means difference, and it is typically produced by performing a
line-by-line comparison of the two versions of the file. You can double-click on
any file in the TortoiseSVN Commit dialog (Figure 2.6) to see the diffs between
your version and the latest version on the server (i.e., the changes you made).
Files that have changed (i.e., any files that “have diffs”) are committed. This
replaces the latest version in the repository with your local version, adding a

Foo.cpp (version 2) Bar.cpp (version 2)
* * Foo.cpp (version 4)
A
Foo.cpp (version 1) Bar.cpp (version 1) :

Figure 2.5. Editing the local copy of a version-controlled file.

70

2. Tools of the Trade

Foo.cpp (version 5)

Foo.cpp (version 4)

Figure 2.7. Com-
mitting local edits to
the repository.

45" CUsers\jgregory\Documents\Projects\gea2-test - Commit - TortoiseSVN @Eﬂ

Commit to:

https:/ /gea2-test.googlecode.com/svn/
Message:
[Recent messages]

Checking in Qgre3D sample code

Changes made (double-didk on file for diff):

i
Ched: All None MNon-versioned ioned Added Deleted Files Directories t
Path Extension Status Property status Lodk -~ |
| trunkBezierPatch,fsrc added D t
'?‘_'jvunh’BezerPabdwfschEezerPahm.q:p .cpp added 1l
1) trunk,Browser added
|| trunk/Browserfamake_install.cmake .cmake added
| trunk /Browser [CMakeFiles added fl
[#1 [trunk/Browser /CMakeFiles /oenerate. stamn .stamn added i M
4 e L3
[#] show unversioned files 89 files selected, 89 files total |
{

[¥] show externals from different repositories

[] Keep locks -

["] Keep changelists Show log OK Cancel Help
- T— |

Figure 2.6. TortoiseSVYN Commit dialog.

new entry to the file’s version history. Any files that have not changed (i.e.,
your local copy is identical to the latest version in the repository) are ignored
by default during a commit. An example commit operation is shown in Fig-
ure 2.7.

If you created any new files prior to the commit, they will be listed as “non-
versioned” in the Commit dialog. You can check the little check boxes beside
them in order to add them to the repository. Any files that you deleted locally
will likewise show up as “missing”—if you check their check boxes, they will
be deleted from the repository. You can also type a comment in the Commit
dialog. This comment is added to the repository’s history log, so that you and
others on your team will know why these files were checked in.

2.1.7 Multiple Check-Out, Branching and Merging

Some version control systems require exclusive check-out. This means that you
must first indicate your intentions to modify a file by checking it out and lock-
ing it. The file(s) that are checked out to you are writable on your local disk
and cannot be checked out by anyone else. All other files in the repository
are read-only on your local disk. Once you're done editing the file, you can

2.1. Version Control

71

check it in, which releases the lock and commits the changes to the repository
for everyone else to see. The process of exclusively locking files for editing
ensures that no two people can edit the same file simultaneously.

Subversion, CVS, Perforce and many other high-quality version control
systems also permit multiple check-out, i.e., you can edit a file while someone
else is editing that same file. Whichever user’s changes are committed first
become the latest version of the file in the repository. Any subsequent com-
mits by other users require that programmer to merge his or her changes with
the changes made by the programmer(s) who committed previously.

Because more than one set of changes (diffs) have been made to the same
file, the version control system must merge the changes in order to produce a
final version of the file. This is often not a big deal, and in fact many conflicts
can be resolved automatically by the version control system. For example, if
you changed function f () and another programmer changed function g (),
then your edits would have been to a different range of lines in the file than
those of the other programmer. In this case, the merge between your changes
and his or her changes will usually resolve automatically without any con-
flicts. However, if you were both making changes to the same function £ (),
then the second programmer to commit his or her changes will need to do a
three-way merge (see Figure 2.8).

For three-way merges to work, the version control server has to be smart
enough to keep track of which version of each file you currently have on your
local disk. That way, when you merge the files, the system will know which
version is the base version (the common ancestor, such as version 4 in Fig-
ure 2.8).

Subversion permits multiple check-out, and in fact it doesn’t require you
to check out files explicitly at all. You simply start editing the files locally—all
files are writable on your local disk at all times. (By the way, this is one reason
that Subversion doesn’t scale well to large projects, in my opinion. To deter-
mine which files you have changed, Subversion must search the entire tree of
source files, which can be slow. Version control systems like Perforce, which
explicitly keep track of which files you have modified, are usually easier to
work with when dealing with large amounts of code. But for small projects,
Subversion’s approach works just fine.)

When you perform a commit operation by right-clicking on any folder and
selecting “SVN Commit...” from the pop-up menu, you may be prompted to
merge your changes with changes made by someone else. But if no one has
changed the file since you last updated your local copy, then your changes
will be committed without any further action on your part. This is a very
convenient feature, but it can also be dangerous. It’s a good idea to always

72

2. Tools of the Trade

Foo.cpp (joe_b) Foo.cpp (suzie_q) joe_b and suzie_q both
start editing Foo.cpp at
the same time

Foo.cpp (version 4)

 —

Foo.cpp (joe_b) Foo.cpp (version 5) suzie_q commits her
* changes first

Foo.cpp (version 4)

A

Foo.cpp (version 6 .
PP () joe_b must now do a 3-way

_—7 A merge, which involves 2 sets
Foo.cpp (joe_b) Foo.cpp (version 5) of diffs:

—~ 1

Foo.cpp (version 4)

A

version 4 to his local version

Figure 2.8. Three-way merge due to local edits by two different users.

check your commits carefully to be sure you aren’t committing any files that
you didn’t intend to modify. When TortoiseSVN displays its Commit Files
dialog, you can double-click on an individual file in order to see the diffs you
made prior to hitting the “OK” button.

2.1.8 Deleting Files

When a file is deleted from the repository, it’s not really gone. The file still ex-
ists in the repository, but its latest version is simply marked “deleted” so that
users will no longer see the file in their local directory trees. You can still see
and access previous versions of a deleted file by right-clicking on the folder in
which the file was contained and selecting “Show log” from the TortoiseSVN
menu.

You can undelete a deleted file by updating your local directory to the
version immediately before the version in which the file was marked deleted.
Then simply commit the file again. This replaces the latest deleted version of
the file with the version just prior to the deletion, effectively undeleting the
file.

2.2. Microsoft Visual Studio

73

2.2 Microsoft Visual Studio

Compiled languages, such as C++, require a compiler and linker in order to
transform source code into an executable program. There are many compil-
ers/linkers available for C++, but for the Microsoft Windows platform, the
most commonly used package is probably Microsoft Visual Studio. The fully
featured Professional Edition of the product can be purchased online from
the Microsoft store. And Visual Studio Express, its lighter-weight cousin,
is available for free download at http://www.microsoft.com/visualstudio/
eng/products/visual-studio-express-products. Documentation on Visual Stu-
dio and the standard C and C++ libraries is available online at the Microsoft
Developer Network (MSDN) site (http://msdn.microsoft.com/en-us/default.
aspx).

Visual Studio is more than just a compiler and linker. It is an integrated
development environment (IDE), including a slick and fully featured text editor
for source code and a powerful source-level and machine-level debugger. In
this book, our primary focus is the Windows platform, so we’ll investigate
Visual Studio in some depth. Much of what you learn below will be applicable
to other compilers, linkers and debuggers, so even if you're not planning on
ever using Visual Studio, I suggest you skim this section for useful tips on
using compilers, linkers and debuggers in general.

2.2.1 Source Files, Headers and Translation Units

A program written in C++ is comprised of source files. These typically have
a .c, .cc, .cxx or .cpp extension, and they contain the bulk of your program’s
source code. Source files are technically known as translation units, because the
compiler translates one source file at a time from C++ into machine
code.

A special kind of source file, known as a header file, is often used in order
to share information, such as type declarations and function prototypes, be-
tween translation units. Header files are not seen by the compiler. Instead,
the C++ preprocessor replaces each #include statement with the contents of
the corresponding header file prior to sending the translation unit to the com-
piler. This is a subtle but very important distinction to make. Header files exist
as distinct files from the point of view of the programmer—but thanks to the
preprocessor’s header file expansion, all the compiler ever sees are translation
units.

74

2. Tools of the Trade

2.2.2 Libraries, Executables and Dynamic Link Libraries

When a translation unit is compiled, the resulting machine code is placed in
an object file (files with a .obj extension under Windows or .o under UNIX-
based operating systems). The machine code in an object file is:

¢ relocatable, meaning that the memory addresses at which the code resides
have not yet been determined, and

¢ unlinked, meaning that any external references to functions and global
data that are defined outside the translation unit have not yet been re-
solved.

Object files can be collected into groups called libraries. A library is simply
an archive, much like a ZIP or tar file, containing zero or more object files.
Libraries exist merely as a convenience, permitting a large number of object
files to be collected into a single easy-to-use file.

Object files and libraries are linked into an executable by the linker. The
executable file contains fully resolved machine code that can be loaded and
run by the operating system. The linker’s jobs are:

® to calculate the final relative addresses of all the machine code, as it will
appear in memory when the program is run, and

* to ensure that all external references to functions and global data made
by each translation unit (object file) are properly resolved.

It's important to remember that the machine code in an executable file is
still relocatable, meaning that the addresses of all instructions and data in the
file are still relative to an arbitrary base address, not absolute. The final abso-
lute base address of the program is not known until the program is actually
loaded into memory, just prior to running it.

A dynamic link library (DLL) is a special kind of library that acts like a hy-
brid between a regular static library and an executable. The DLL acts like a
library, because it contains functions that can be called by any number of dif-
ferent executables. However, a DLL also acts like an executable, because it
can be loaded by the operating system independently, and it contains some
start-up and shut-down code that runs much the way themain () function in
a C++ executable does.

The executables that use a DLL contain partially linked machine code. Most
of the function and data references are fully resolved within the final exe-
cutable, but any references to external functions or data that exist in a DLL re-
main unlinked. When the executable is run, the operating system resolves the

2.2. Microsoft Visual Studio

75

addresses of all unlinked functions by locating the appropriate DLLs, load-
ing them into memory if they are not already loaded, and patching in the
necessary memory addresses. Dynamically linked libraries are a very useful
operating system feature, because individual DLLs can be updated without
changing the executable(s) that use them.

2.2.3 Projects and Solutions

Now that we understand the difference between libraries, executables and
dynamic link libraries (DLLs), let’s see how to create them. In Visual Studio,
a project is a collection of source files which, when compiled, produce a library,
an executable or a DLL. In Visual Studio 2010 and 2012, projects are stored in
project files with a .vcxproj extension. These files are in XML format, so they
are reasonably easy for a human to read and even edit by hand if necessary.

All versions of Visual Studio since version 7 (Visual Studio 2003) employ
solution files (files with a .sIn extension) as a means of containing and manag-
ing collections of projects. A solution is a collection of dependent and /or inde-
pendent projects intended to build one or more libraries, executables and/or
DLLs. In the Visual Studio graphical user interface, the Solution Explorer is
usually displayed along the right or left side of the main window, as shown
in Figure 2.9.

The Solution Explorer is a tree view. The solution itself is at the root, with
the projects as its immediate children. Source files and headers are shown as
children of each project. A project can contain any number of user-defined
folders, nested to any depth. Folders are for organizational purposes only
and have nothing to do with the folder structure in which the files may reside
on-disk. However, it is common practice to mimic the on-disk folder structure
when setting up a project’s folders.

B OGRE - Microsoft Visual Studio Express 2012 for Windc
FLE DT VEW PROJECT BULD DEBUG T
Bl e - - P Local Wi
g]
g @ EEE
Search Solution Explorer (Ctrl+;) P~
[5] Solution 'OGRE' 45 projects) 2
b [ALL BUILD
B Sample BezierPatch
P Sample BSP

[Semple_CameraTrack

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

Figure 2.9. The VisualStudio Solution Explorer window.

76

2. Tools of the Trade

2.2.4 Build Configurations

The C/C++ preprocessor, compiler and linker offer a wide variety of options
to control how your code will be built. These options are normally specified
on the command line when the compiler is run. For example, a typical com-
mand to build a single translation unit with the Microsoft compiler might look
like this:

C:\> cl /c foo.cpp /Fo foo.obj /Wall /0d /Zi

This tells the compiler/linker to compile but not link (/c) the translation
unit named foo.cpp, output the result to an object file named foo.obj (/Fo
foo.obj), turn on all warnings (/Wall), turn off all optimizations (/0d) and
generate debugging information (/Z1).

Modern compilers provide so many options that it would be impractical
and error prone to specify all of them every time you build your code. That’s
where build configurations come in. A build configuration is really just a collec-
tion of preprocessor, compiler and linker options associated with a particular
project in your solution. You can define any number of build configurations,
name them whatever you want, and configure the preprocessor, compiler and
linker options differently in each configuration. By default, the same options
are applied to every translation unit in the project, although you can override
the global project settings on an individual translation unit basis. (I recom-
mend avoiding this if at all possible, because it becomes difficult to tell which
.cpp files have custom settings and which do not.)

Most projects have at least two build configurations, typically called “De-
bug” and “Release.” The release build is for the final shipping software, while
the debug build is for development purposes. A debug build runs more
slowly than a release build, but it provides the programmer with invaluable
information for developing and debugging the program.

2.2.4.1 Common Build Options

This section lists some of the most common options you'll want to control via
build configurations for a game engine project.

Preprocessor Settings

The C++ preprocessor handles the expansion of #included files and the defi-
nition and substitution of #de fined macros. One extremely powerful feature
of all modern C++ preprocessors is the ability to define preprocessor macros
via command-line options (and hence via build configurations). Macros de-
fined in this way act as though they had been written into your source code

2.2. Microsoft Visual Studio

77

with a #define statement. For most compilers, the command line option for
this is -D or /D, and any number of these directives can be used.

This feature allows you to communicate various build options to your
code, without having to modify the source code itself. As a ubiquitous exam-
ple, the symbol _ DEBUG is always defined for a debug build, while in release
builds, the symbol NDEBUG is defined instead. The source code can check
these flags and in effect “know” whether it is being built in debug or release
mode. This is known as conditional compilation. For example,

void f ()
{
#ifdef _DEBUG
printf ("Calling function f£()\n");
#endif
//
}

The compiler is also free to introduce “magic” preprocessor macros into
your code, based on its knowledge of the compilation environment and target
platform. For example, the macro ___cplusplus is defined by most C/C++
compilers when compiling a C++ file. This allows code to be written that
automatically adapts to being compiled for C or C++.

As another example, every compiler identifies itself to the source code via
a “magic” preprocessor macro. When compiling code under the Microsoft
compiler, the macro _MSC_VER is defined; when compiling under the GNU
compiler (gcc), the macro ___GNUC___ is defined instead and so on for the
other compilers. The target platform on which the code will be run is like-
wise identified via macros. For example, when building for a 32-bit Windows
machine, the symbol _WIN32 is always defined. These key features permit
cross-platform code to be written, because they allow your code to “know”
what compiler is compiling it and on which target platform it is destined to
be run.

Compiler Settings

One of the most common compiler options controls whether or not the com-
piler should include debugging information with the object files it produces.
This information is used by debuggers to step through your code, display the
values of variables and so on. Debugging information makes your executa-
bles larger on disk and also opens the door for hackers to reverse-engineer
your code, so it is always stripped from the final shipping version of your
executable. However, during development, debugging information is invalu-
able and should always be included in your builds.

78

2. Tools of the Trade

The compiler can also be told whether or not to expand inline functions.
When inline function expansion is turned off, every inline function appears
only once in memory, at a distinct address. This makes the task of tracing
through the code in the debugger much simpler, but obviously comes at the
expense of the execution speed improvements normally achieved by inlining.

Inline function expansion is but one example of generalized code transfor-
mations known as optimizations. The aggressiveness with which the compiler
attempts to optimize your code, and the kinds of optimizations its uses, can
be controlled via compiler options. Optimizations have a tendency to reorder
the statements in your code, and they also cause variables to be stripped out
of the code altogether, or moved around, and can cause CPU registers to be
reused for new purposes later in the same function. Optimized code usually
confuses most debuggers, causing them to “lie” to you in various ways, and
making it difficult or impossible to see what’s really going on. As a result,
all optimizations are usually turned off in a debug build. This permits every
variable and every line of code to be scrutinized as it was originally coded.
But, of course, such code will run much more slowly than its fully optimized
counterpart.

Linker Settings

The linker also exposes a number of options. You can control what type of
output file to produce—an executable or a DLL. You can also specify which
external libraries should be linked into your executable, and which directory
paths to search in order to find them. A common practice is to link with de-
bug libraries when building a debug executable and with optimized libraries
when building in release mode.

Linker options also control things like stack size, the preferred base ad-
dress of your program in memory, what type of machine the code will run on
(for machine-specific optimizations), and a host of other minutia with which
we will not concern ourselves here.

2.2.4.2 Typical Build Configurations

Game projects often have more than just two build configurations. Here are a
few of the common configurations I've seen used in game development.

* Debug. A debug build is a very slow version of your program, with all
optimizations turned off, all function inlining disabled, and full debug-
ging information included. This build is used when testing brand new
code and also to debug all but the most trivial problems that arise during
development.

2.2. Microsoft Visual Studio

79

* Release. A release build is a faster version of your program, but with de-
bugging information and assertions still turned on. (See Section 3.3.3.3
for a discussion of assertions.) This allows you to see your game run-
ning at a speed representative of the final product, but it still gives you
some opportunity to debug problems.

® Production. A production configuration is intended for building the fi-
nal game that you will ship to your customers. It is sometimes called a
“Final” build or “Disk” build. Unlike a release build, all debugging in-
formation is stripped out of a production build, all assertions are usually
turned off, and optimizations are cranked all the way up. A production
build is very tricky to debug, but it is the fastest and leanest of all build
types.

* Tools. Some game studios utilize code libraries that are shared between
offline tools and the game itself. In this scenario, it often makes sense
to define a “Tools” build, which can be used to conditionally compile
shared code for use by the tools. The tools build usually defines a pre-
processor macro (e.g., TOOLS_BUILD) that informs the code that it is be-
ing built for use in a tool. For example, one of your tools might require
certain C++ classes to expose editing functions that are not needed by
the game. These functions could be wrapped in an #ifdef TOOLS_
BUILD directive. Since you usually want both debug and release ver-
sions of your tools, you will probably find yourself creating fwo tools
builds, named something like “ToolsDebug” and “ToolsRelease.”

Hybrid Builds

A hybrid build is a build configuration in which the majority of the translation
units are built in release mode, but a small subset of them is built in debug
mode. This permits the segment of code that is currently under scrutiny to be
easily debugged, while the rest of the code continues to run at full speed.

With a text-based build system like make, it is quite easy to set up a hybrid
build that permits users to specify the use of debug mode on a per-translation-
unit basis. In a nutshell, we define a make variable called something like
$HYBRID_SOURCES, which lists the names of all translation units (.cpp files)
that should be compiled in debug mode for our hybrid build. We set up build
rules for compiling both debug and release versions of every translation unit,
and arrange for the resulting object files (.obj/.0) to be placed into two differ-
ent folders, one for debug and one for release. The final link rule is set up to
link with the debug versions of the object files listed in $HYBRID_SOURCES
and with the release versions of all other object files. If we’ve set it up prop-
erly, make’s dependency rules will take care of the rest.

80

2. Tools of the Trade

Unfortunately, this is not so easy to do in Visual Studio, because its build
configurations are designed to be applied on a per-project basis, not per-trans-
lation unit. The crux of the problem is that we cannot easily define a list of the
translation units that we want to build in debug mode. However, if your
source code is already organized into libraries, you can set up a “Hybrid”
build configuration at the solution level, which picks and chooses between
debug and release builds on a per-project (and hence per-library) basis. This
isn’t as flexible as having control on a per-translation-unit basis, but it does
work reasonably well if your libraries are sufficiently granular.

Build Configurations and Testability

The more build configurations your project supports, the more difficult test-
ing becomes. Although the differences between the various configurations
may be slight, there’s a finite probability that a critical bug may exist in one
of them but not in the others. Therefore, each build configuration must be
tested equally thoroughly. Most game studios do not formally test their de-
bug builds, because the debug configuration is primarily intended for internal
use during initial development of a feature and for the debugging of problems
found in one of the other configurations. However, if your testers spend most
of their time testing your release configuration, then you cannot simply make
a production build of your game the night before Gold Master and expect it
to have an identical bug profile to that of the release build. Practically speak-
ing, the test team must test both your release and production builds equally
throughout alpha and beta to ensure that there aren’t any nasty surprises lurk-
ing in your production build. In terms of testability, there is a clear advantage
to keeping your build configurations to a minimum, and in fact some stu-
dios have no production build for this reason—they simply ship their release
build once it has been thoroughly tested (but with the debugging information
stripped out).

2.2.43 Project Configuration Tutorial

Right-clicking on any project in the Solution Explorer and selecting “Proper-
ties...” from the menu brings up the project’s “Property Pages” dialog. The
tree view on the left shows various categories of settings. Of these, the four
we will use most are:

e Configuration Properties/General,

* Configuration Properties/Debugging,
¢ Configuration Properties/C++, and

e Configuration Properties/Linker.

2.2. Microsoft Visual Studio

8l

Configurations Drop-Down Combo Box

Notice the drop-down combo box labeled “Configuration:” at the top-left cor-
ner of the window. All of the properties displayed on these property pages
apply separately to each build configuration. If you set a property for the de-
bug configuration, this does not necessarily mean that the same setting exists
for the release configuration.

If you click on the combo box to drop down the list, you'll find that you can
select a single configuration or multiple configurations, including “All config-
urations.” As a rule of thumb, try to do most of your build configuration edit-
ing with “All configurations” selected. That way, you won't have to make the
same edits multiple times, once for each configuration—and you don’t risk
setting things up incorrectly in one of the configurations by accident. How-
ever, be aware that some settings need to be different between the debug and
release configurations. For example, function inlining and code optimization
settings should, of course, be different between debug and release builds.

General Property Page

On the General property page, shown in Figure 2.10, the most useful fields are
the following:

* Output directory. This defines where the final product(s) of the build
will go—namely, the executable, library or DLL that the compiler/linker
ultimately outputs.

o Intermediate directory. This defines where intermediate files, primarily
object files (.obj extension), are placed during a build. Intermediate files
are never shipped with your final program—they are only required dur-
ing the process of building your executable, library or DLL. Hence, it is
a good idea to place intermediate files in a different directory than the
final products (.exe, .1ib or .dll files).

Note that VisualStudio provides a macro facility, which may be used when
specifying directories and other settings in the “Project Property Pages” dia-
log. A macro is essentially a named variable that contains a global value and
that can be referred to in your project configuration settings.

Macros are invoked by writing the name of the macro enclosed in paren-
theses and prefixed with a dollar sign (e.g., $ (ConfigurationName)). Some
commonly used macros are listed below.

* $(TargetFileName). The name of the final executable, library or DLL
file being built by this project.

82

2. Tools of the Trade

Sample_BSP.dir\Debugh

Debugging Sample_BSP_d

Vs Directories Target Bitension an
4 CCer Extensions to Delete on Clean *.cdf*.cache;”.obj "l resources; " tlb;" i tih; “tmp; .rsp;"pgc .
General Build Log File SONtDIN\S(MSBuildProjectName).log
Optimization . .
Platform Toolset Visual Studio 2012 (v110)

Preprocessor

Enable Managed Incremental Build No
Code Generation

Language Dynamic Library (D
Precompiled Headers ; Y

Output Files se Use Standard Windows Libraries
Browse Information Useof ATL Net Using ATL
Advanced Character Set Use Multi-Byte Character Set
All Options Common Langusge Runtime Support No Common Language Runtime Support
Command Line Whole Program Optimization No Whole Program Optimization

> Linker Windows Store App Suppert No

» Menifest Tool

» Custom Build Step

» Code Analysis Gutput Directory

Specifies a relative path to the output file directory: can include environment variables.

‘ i v

Figure 2.10. Visual Studio project property pages—General page.

* $(TargetPath). The full path of the folder containing the final exe-
cutable, library or DLL.

® $(ConfigurationName). The name of the build config, typically “De-
bug” or “Release.”

e $(OutDir). The value of the “Output Directory” field specified in this
dialog.

® $(IntDir). The value of the “Intermediate Directory” field in this dia-
log.

® $(VCInstallDir). The directory in which Visual Studio’s standard C
library is currently installed.

The benefit of using macros instead of hard-wiring your configuration set-
tings is that a simple change of the global macro’s value will automatically af-
fect all configuration settings in which the macro is used. Also, some macros
like $ (ConfigurationName) automatically change their values depending
on the build configuration, so using them can permit you to use identical set-
tings across all your configurations.

To see a complete list of all available macros, click in either the “Output
Directory” field or the “Intermediate Directory” field on the “General” prop-
erty page, click the little arrow to the right of the text field, select “Edit..."
and then click the “Macros” button in the dialog that comes up.

Debugging Property Page

The “Debugging” property page is where the name and location of the exe-
cutable to debug is specified. On this page, you can also specify the command-

2.2. Microsoft Visual Studio

83

line argument(s) that should be passed to the program when it runs. We’ll
discuss debugging your program in more depth below.

C/C++ Property Page

The C/C++ property page controls compile-time language settings—things
that affect how your source files will be compiled into object files (.obj exten-
sion). The settings on this page do not affect how your object files are linked
into a final executable or DLL.

You are encouraged to explore the various subpages of the C/C++ page
to see what kinds of settings are available. Some of the most commonly used
settings include the following:

* General Property Page/Additional Include Directories. This field lists the
on-disk directories that will be searched when looking for #included
header files.

Important: It is always best to specify these directories using relative
paths and /or with Visual Studio macros like $ (OutDir) or $ (IntDir).
That way, if you move your build tree to a different location on disk or to
another computer with a different root folder, everything will continue
to work properly.

» General Property Page/Debug Information Format. This field controls
whether or not debug information is generated and in what format. Typ-
ically both debug and release configurations include debugging infor-
mation so that you can track down problems during the development
of your game. The final production build will have all the debug info
stripped out to prevent hacking.

* Preprocessor Property Page/Preprocessor Definitions. This very handy field
lists any number of C/C++ preprocessor symbols that should be de-
fined in the code when it is compiled. See Preprocessor Settings in Section
2.2.4.1 for a discussion of preprocessor-defined symbols.

Linker Property Page

The “Linker” property page lists properties that affect how your object code
files will be linked into an executable or DLL. Again, you are encouraged to
explore the various subpages. Some commonly used settings follow:

* General Property Page/Output File. This setting lists the name and location
of the final product of the build, usually an executable or DLL.

84

2. Tools of the Trade

® General Property Page/Additional Library Directories. Much like the C/C++
Additional Include Directories field, this field lists zero or more directo-
ries that will be searched when looking for libraries and object files to
link into the final executable.

o Input Property Page/Additional Dependencies. This field lists external li-
braries that you want linked into your executable or DLL. For example,
the OGRE libraries would be listed here if you are building an OGRE-
enabled application.

Note that Visual Studio employs various “magic spells” to specify libraries
that should be linked into an executable. For example, a special #pragma in-
struction in your source code can be used to instruct the linker to automati-
cally link with a particular library. For this reason, you may not see all of the
libraries you're actually linking to in the “Additional Dependencies” field.
(In fact, that's why they are called additional dependencies.) You may have
noticed, for example, that Direct X applications do not list all of the DirectX
libraries manually in their “Additional Dependencies” field. Now you know
why.

2.2.5 Debugging Your Code

One of the most important skills any programmer can learn is how to effec-
tively debug code. This section provides some useful debugging tips and
tricks. Some are applicable to any debugger and some are specific to Microsoft
Visual Studio. However, you can usually find an equivalent to Visual Studio’s
debugging features in other debuggers, so this section should prove useful
even if you don’t use Visual Studio to debug your code.

2.2.51 The Start-Up Project

A Visual Studio solution can contain more than one project. Some of these
projects build executables, while others build libraries or DLLs. It’s possible
to have more than one project that builds an executable in a single solution.
Visual Studio provides a setting known as the “Start-Up Project.” This is the
project that is considered “current” for the purposes of the debugger. Typi-
cally a programmer will debug one project at a time by setting a single start-
up project. However, it is possible to debug multiple projects simultaneously
(see http://msdn.microsoft.com/en-us/library/0s590bew(v=vs.100).aspx for
details).

The start-up project is highlighted in bold in the Solution Explorer. By de-
fault, hitting F5 will run the .exe built by the start-up project, if the start-up

2.2. Microsoft Visual Studio

85

project builds an executable. (Technically speaking, F5 runs whatever com-
mand you type into the Command field in the Debugging property page, so
it’s not limited to running the .exe built by your project.)

2.2.5.2 Breakpoints

Breakpoints are the bread and butter of code debugging. A breakpoint instructs
the program to stop at a particular line in your source code so that you can
inspect what’s going on.

In Visual Studio, select a line and hit F9 to toggle a breakpoint. When you
run your program and the line of code containing the breakpoint is about to
be executed, the debugger will stop the program. We say that the breakpoint
has been “hit.” A little arrow will show you which line of code the CPU’s
program counter is currently on. This is shown in Figure 2.11.

B9 36 6a W Wl 0B N

ad; [3796] Main Thread Y Stack Frame: Sample_CompositorisetupScene

h SdkSample.h CelShadingh
> Sample_Compositor
mScenebgr->setShadowTechnique(Ogre: : SHADOWTYPE_TEXTURE_MODULATIVE);
mSceneMgr->setShadowFarDistance(1000) ;

Ogre: :MovableObject::setDefaultVisibilityFlags (@x00000001) ;

// set ambient light
© || mSceneMgr->setAmbientLight(Ogre: :ColourValue(6.3, 0.3, 6.2));

Ogre::Light* 1 = mSceneMgr->createlight("Light2");
Ogre::Vector3 dir(-1,-1,0);
dir.normalise();

Light: :LT_DIRECTIONAL);

1->: ir);
1->setDiffuseColour(l, 1, 0.8);
T-scat@narnlanfalaunf1 1 1)

Figure 2.11. Setting a breakpoint in Visual Studio.

2.2.53 Stepping through Your Code

Once a breakpoint has been hit, you can single-step your code by hitting the
F10 key. The yellow program-counter arrow moves to show you the lines
as they execute. Hitting F11 steps into a function call (i.e., the next line of
code you'll see is the first line of the called function), while F10 steps over that
function call (i.e., the debugger calls the function at full speed and then breaks
again on the line right after the call).

2.2.5.4 The Call Stack

The call stack window, shown in Figure 2.12, shows you the stack of functions
that have been called at any given moment during the execution of your code.
To display the call stack (if it is not already visible), go to the “Debug” menu
on the main menu bar, select “Windows” and then “Call Stack.”

86

2. Tools of the Trade

Call Stack > RBx
Lang ~

pScene() Line 385 =

pContent() Line 126 Crr

: setup(Ogre:RenderWindow “ window, C++

01S_d 000007 fecebe0Bb30
0I5_d.dIIl000007 feeebdfcbf()

eea2616280
eealblcal(
eealSF558()
ediate Window

Figure 2.12. The call stack window.

Once a breakpoint has been hit (or the program is manually paused), you
can move up and down the call stack by double-clicking on entries in the “Call
Stack” window. This is very useful for inspecting the chain of function calls
that were made between main () and the current line of code. For example,
you might trace back to the root cause of a bug in a parent function that has
manifested itself in a deeply nested child function.

2.2.5.5 The Watch Window

As you step through your code and move up and down the call stack, you will
want to be able to inspect the values of the variables in your program. This
is what watch windows are for. To open a watch window, go to the “Debug”
menu, select “Windows...,” then select “Watch...,” and finally select one of
“Watch 1”7 through “Watch 4.” (Visual Studio allows you to open up to four
watch windows simultaneously.) Once a watch window is open, you can type
the names of variables into the window or drag expressions in directly from
your source code.

As you can see in Figure 2.13, variables with simple data types are shown
with their values listed immediately to the right of their names. Complex
data types are shown as little tree views that can be easily expanded to “drill
down” into virtually any nested structure. The base class of a class is always
shown as the first child of an instance of a derived class. This allows you to
inspect not only the class” data members, but also the data members of its base
class(es).

You can type virtually any valid C/C++ expression into the watch window,
and Visual Studio will evaluate that expression and attempt to display the re-
sulting value. For example, you could type “5 + 3” and Visual Studio will
display “8.” You can cast variables from one type to another by using C or C++
casting syntax. For example, typing “ (f1loat) intVarl/ (float) intVar2”
in the watch window will display the ratio of two integer variables as a floating-
point value.

2.2. Microsoft Visual Studio

87

Ugre::Sceneliode™ Nl = mSceneMgr->getKootSceneNode()->createChiLc
nl->attachObject(pEnt);

D pEnt = mSceneMgr->createEntity("2", "tudorhouse.mesh");
Ogre::Scenellode* n2 = mSceneMgr->getRootSceneNode ()->createChilc
1% -4 s »
Name Value Type a
@, mSceneMgr 234 not available, no
@ pEnt 0000000000<781d50 <Information not available, ne Ogre:Entity *
@ dir {x=-0.707106769 y=-0.707106769 z=0.000000000 } ~ Ogre::Vector3
B nl 0x0000000008c52040 <Information not available, no Ogre::SceneNode *
© Ogre:Node {mParent-0:000000000839370 <Information not av Ogre:Node
@, mObjectsByName {.d std::unordered_map=<std:basic
@, mWireBoundingBox 0%0000000000000000 {...} Ogre::WireBoundingBox *
@; mShowBoundingBox false bool
@, mHideBoundingBox false bool
@, mCreator (060000000008 d62340 not available, no Ogr -
8 {mMinimurm={r=-0.500000000 y=-0.500000000 z=-0| Ogre:AxisAlignedBex
@ mMinimum {x=-0.500000000 y=-0.500000000 7=-0.500000000 } Ogre:Vector3
@ mMaximum {x=0.500000000 y=0.500000000 z=0.500000000 } Ogre:Vectord
@, mEbxtent EXTENT_NULL (0) Ogre:AxisAlignedBox:Extent
@ mComers 0:0000000000000000 {<=777 y=77 2=727 } Ogre:Vectod *
@, mYawFixed false bool -

Breakpoints | Locals | Watch1

Figure 2.13. Visual Studio’s watch window.

You can even call functions in your program from within the watch window.
Visual Studio reevaluates the expressions typed into the watch window(s)
automatically, so if you invoke a function in the watch window, it will be
called every time you hit a breakpoint or single-step your code. This allows
you to leverage the functionality of your program in order to save yourself
work when trying to interpret the data that you're inspecting in the debug-
ger. For example, let’s say that your game engine provides a function called
quatToAngleDeg (), which converts a quaternion to an angle of rotation in
degrees. You can call this function in the watch window in order to easily
inspect the rotation angle of any quaternion within the debugger.

You can also use various suffixes on the expressions in the watch window
in order to change the way Visual Studio displays the data, as shown in Fig-
ure 2.14.

e The ”, d” suffix forces values to be displayed in decimal notation.
¢ The”, x” suffix forces values to be displayed in hexadecimal notation.

e The “, n” suffix (where n is any positive integer) forces Visual Studio to
treat the value as an array with n elements. This allows you to expand
array data that is referenced through a pointer.

Name Value
@ ix 000000005
@ id 1n

B & mCubeCamera3 0:x000000000f56ca08 {{mSceneMg:
@ [0 {mSceneMgr=0:0000000008db1 dé
LR} {mSceneMgr=010969467175¢403
e} {mSceneMgr=0:000000000000000

Figure 2.14. Comma suffixes in the Visual Studio watch window.

88

2. Tools of the Trade

Be careful when expanding very large data structures in the watch win-
dow, because it can sometimes slow the debugger down to the point of being
unusable.

2.2.5.6 Data Breakpoints

Regular breakpoints trip when the CPU’s program counter hits a particular
machine instruction or line of code. However, another incredibly useful fea-
ture of modern debuggers is the ability to set a breakpoint that trips when-
ever a specific memory address is written to (i.e., changed). These are called
data breakpoints, because they are triggered by changes to data, or sometimes
hardware breakpoints, because they are implemented via a special feature of the
CPU’s hardware—namely, the ability to raise an interrupt when a predefined
memory address is written to.

Here’s how data breakpoints are typically used. Let’s say you are tracking
down a bug that manifests itself as a zero (0. 0f) value mysteriously appear-
ing inside a member variable of a particular object called m_angle that should
always contain a nonzero angle. You have no idea which function might be
writing that zero into your variable. However, you do know the address of
the variable. (You can just type “sobject .m_angle” into the watch window
to find its address.) To track down the culprit, you can set a data breakpoint
on the address of object .m_angle, and then simply let the program run.
When the value changes, the debugger will stop automatically. You can then
inspect the call stack to catch the offending function red-handed.

To set a data breakpoint in Visual Studio, take the following steps.

¢ Bring up the “Breakpoints” window found on the “Debug” menu under
“Windows” and then “Breakpoints” (Figure 2.15).

* Select the “New” drop-down button in the upper-left corner of the win-
dow.
¢ Select “New Data Breakpoint.”

* Type in the raw address or an address-valued expression, such as
“smyVariable” (Figure 2.16).

2.2.5.7 Conditional Breakpoints

You'll also notice in the “Breakpoints” window that you can set conditions
and hit counts on any type breakpoint—data breakpoints or regular line-of-
code breakpoints.

A conditional breakpoint causes the debugger to evaluate the C/C++ ex-
pression you provide every time the breakpoint is hit. If the expression is

2.2. Microsoft Visual Studio

89

New- X | @ & G| EE Columns- | Search: -
Name Labels = Condition Hit Count

Am[®] Compositor.h, line 385 (no condition) break always (currently 0)

{[71® CubeMapping.h, fine 117 (ne condiitien) break always (currently 1)

s i

ecified add

hanges.

like "0x12345678", or an expression that evaluates to an address, like "8uc". Make
esents the address of the data to monitor.

Breakpoints | Locals| Watch1

Figure 2.15. The Visual Studio breakpoints window.

true, the debugger stops your program and gives you a chance to see what'’s
going on. If the expression is false, the breakpoint is ignored and the pro-
gram continues. This is very useful for setting breakpoints that only trip
when a function is called on a particular instance of a class. For example,
let’s say you have a game level with 20 tanks on-screen, and you want to stop
your program when the third tank, whose memory address you know to be
0x12345678, is running. By setting the breakpoint’s condition expression to
something like “ (uintptr_t)this == 0x12345678”, you can restrict the
breakpoint only to the class instance whose memory address (this pointer)
is 0x12345678.

Specifying a hit count for a breakpoint causes the debugger to decrement a
counter every time the breakpoint is hit, and only actually stop the program
when that counter reaches zero. This is really useful for situations where your
breakpoint is inside a loop, and you need to inspect what’s happening during
the 376th iteration of the loop (e.g., the 376th element in an array). You can’t
very well sit there and hit the F5 key 375 times! But you can let the hit count
feature of Visual Studio do it for you.

One note of caution: conditional breakpoints cause the debugger to eval-
uate the conditional expression every time the breakpoint is hit, so they can
bog down the performance of the debugger and your game.

2.2.5.8 Debugging Optimized Builds

I mentioned above that it can be very tricky to debug problems using a release
build, due primarily to the way the compiler optimizes the code. Ideally, ev-
ery programmer would prefer to do all of his or her debugging in a debug
build. However, this is often not possible. Sometimes a bug occurs so rarely
that you'll jump at any chance to debug the problem, even if it occurs in a
release build on someone else’s machine. Other bugs only occur in your re-
lease build, but they magically disappear whenever you run the debug build.
These dreaded release-only bugs are sometimes caused by uninitialized vari-
ables, because variables and dynamically allocated memory blocks are often

Figure 2.16. Defining a data breakpoint.

90

2. Tools of the Trade

set to zero in debug mode but are left containing garbage in a release build.
Other common causes of release-only bugs include code that has been acci-
dentally omitted from the release build (e.g., when important code is erro-
neously placed inside an assertion statement), data structures whose size or
data member packing changes between debug and release builds, bugs that
are only triggered by inlining or compiler-introduced optimizations, and (in
rare cases) bugs in the compiler’s optimizer itself, causing it to emit incorrect
code in a fully optimized build.

Clearly, it behooves every programmer to be capable of debugging prob-
lems in a release build, unpleasant as it may seem. The best ways to reduce
the pain of debugging optimized code is to practice doing it and to expand
your skill set in this area whenever you have the opportunity. Here are a few
tips.

® Learn to read and step through disassembly in the debugger. In a release
build, the debugger often has trouble keeping track of which line of
source code is currently being executed. Thanks to instruction reorder-
ing, you'll often see the program counter jump around erratically within
the function when viewed in source code mode. However, things be-
come sane again when you work with the code in disassembly mode
(i.e., step through the assembly language instructions individually). Ev-
ery C/C++ programmer should be at least a little bit familiar with the
architecture and assembly language of their target CPU(s). That way,
even if the debugger is confused, you won't be.

o Use registers to deduce variables’ values or addresses. The debugger will
sometimes be unable to display the value of a variable or the contents of
an object in a release build. However, if the program counter is not too
far away from the initial use of the variable, there’s a good chance its ad-
dress or value is still stored in one of the CPU’s registers. If you can trace
back through the disassembly to where the variable is first loaded into
a register, you can often discover its value or its address by inspecting
that register. Use the register window, or type the name of the register
into a watch window, to see its contents.

e Inspect variables and object contents by address. Given the address of a vari-
able or data structure, you can usually see its contents by casting the
address to the appropriate type in a watch window. For example, if we
know that an instance of the Foo class resides at address 0x1378 A0CO,
we can type “ (Foo*) 0x1378A0C0” in a watch window, and the debug-
ger will interpret that memory address as if it were a pointer to a Foo
object.

2.3. Profiling Tools

9l

¢ Leverage static and global variables. Even in an optimized build, the debug-
ger can usually inspect global and static variables. If you cannot deduce
the address of a variable or object, keep your eye open for a static or
global that might contain its address, either directly or indirectly. For
example, if we want to find the address of an internal object within the
physics system, we might discover that it is in fact stored in a member
variable of the global PhysicsWorld object.

* Modify the code. If you can reproduce a release-only bug relatively eas-
ily, consider modifying the source code to help you debug the problem.
Add print statements so you can see what’s going on. Introduce a global
variable to make it easier to inspect a problematic variable or object in
the debugger. Add code to detect a problem condition or to isolate a
particular instance of a class.

2.3 Profiling Tools

Games are typically high-performance real-time programs. As such, game
engine programmers are always looking for ways to speed up their code.
There is a well-known, albeit rather unscientific, rule of thumb known as the
Pareto principle (see http://en.wikipedia.org/wiki/Pareto_principle). It is also
known as the 80-20 rule, because it states that in many situations, 80% of the
effects of some event come from only 20% of the possible causes. In computer
science, we often use a variant of this principle known as the 90-10 rule, which
states that 90% of the wall clock time spent running any piece of software is
accounted for by only 10% of the code. In other words, if you optimize 10% of
your code, you can potentially realize 90% of all the gains in execution speed
you'll ever realize.

So, how do you know which 10% of your code to optimize? For that, you
need a profiler. A profiler is a tool that measures the execution time of your
code. It can tell you how much time is spent in each function. You can then
direct your optimizations toward only those functions that account for the
lion’s share of the execution time.

Some profilers also tell you how many times each function is called. This
is an important dimension to understand. A function can eat up time for
two reasons: (a) it takes a long time to execute on its own, or (b) it is called
frequently. For example, a function that runs an A* algorithm to compute the
optimal paths through the game world might only be called a few times each
frame, but the function itself may take a significant amount of time to run. On

92

2. Tools of the Trade

the other hand, a function that computes the dot product may only take a few
cycles to execute, but if you call it hundreds of thousands of times per frame,
it might drag down your game’s frame rate.

Even more information can be obtained if you use the right profiler. Some
profilers report the call graph, meaning that for any given function, you can
see which functions called it (these are known as parent functions) and which
functions it called (these are known as child functions or descendants). You can
even see what percentage of the function’s time was spent calling each of its
descendants and the percentage of the overall running time accounted for by
each individual function.

Profilers fall into two broad categories.

1. Statistical profilers. This kind of profiler is designed to be unobtrusive,
meaning that the target code runs at almost the same speed, whether or
not profiling is enabled. These profilers work by sampling the CPU’s
program counter register periodically and noting which function is cur-
rently running. The number of samples taken within each function yields
an approximate percentage of the total running time that is eaten up
by that function. Intel’s VTune is the gold standard in statistical profil-
ers for Windows machines employing Intel Pentium processors, and it
is now also available for Linux. See http://software.intel.com/en-us/
intel-vtune-amplifier-xe for details.

2. Instrumenting profilers. This kind of profiler is aimed at providing the
most accurate and comprehensive timing data possible, but at the ex-
pense of real-time execution of the target program—when profiling is
turned on, the target program usually slows to a crawl. These profilers
work by preprocessing your executable and inserting special prologue
and epilogue code into every function. The prologue and epilogue code
calls into a profiling library, which in turn inspects the program’s call
stack and records all sorts of details, including which parent function
called the function in question and how many times that parent has
called the child. This kind of profiler can even be set up to monitor
every line of code in your source program, allowing it to report how
long each line is taking to execute. The results are stunningly accurate
and comprehensive, but turning on profiling can make a game virtu-
ally unplayable. IBM’s Rational Quantify, available as part of the Ra-
tional Purify Plus tool suite, is an excellent instrumenting profiler. See
http://www.ibm.com/developerworks/rational /library /957 html for
an introduction to profiling with Quantify.

2.4. Memory Leak and Corruption Detection

93

Microsoft has also published a profiler that is a hybrid between the two
approaches. It is called LOP, which stands for low-overhead profiler. It uses
a statistical approach, sampling the state of the processor periodically, which
means it has a low impact on the speed of the program’s execution. However,
with each sample, it analyzes the call stack, thereby determining the chain of
parent functions that resulted in each sample. This allows LOP to provide
information normally not available with a statistical profiler, such as the dis-
tribution of calls across parent functions.

2.3.1 List of Profilers

There are a great many profiling tools available. See http://en.wikipedia.org/
wiki/List_of_performance_analysis_tool for a reasonably comprehensive list.

2.4 Memory Leak and Corruption Detection

Two other problems that plague C and C++ programmers are memory leaks
and memory corruption. A memory leak occurs when memory is allocated
but never freed. This wastes memory and eventually leads to a potentially fa-
tal out-of-memory condition. Memory corruption occurs when the program
inadvertently writes data to the wrong memory location, overwriting the im-
portant data that was there—while simultaneously failing to update the mem-
ory location where that data should have been written. Blame for both of these
problems falls squarely on the language feature known as the pointer.

A pointer is a powerful tool. It can be an agent of good when used prop-
erly—but it can also be all-too-easily transformed into an agent of evil. If a
pointer points to memory that has been freed, or if it is accidentally assigned
a nonzero integer or floating-point value, it becomes a dangerous tool for cor-
rupting memory, because data written through it can quite literally end up
anywhere. Likewise, when pointers are used to keep track of allocated mem-
ory, it is all too easy to forget to free the memory when it is no longer needed.
This leads to memory leaks.

Clearly, good coding practices are one approach to avoiding pointer-related
memory problems. And it is certainly possible to write solid code that essen-
tially never corrupts or leaks memory. Nonetheless, having a tool to help you
detect potential memory corruption and leak problems certainly can’t hurt.
Thankfully, many such tools exist.

My personal favorite is IBM’s Rational Purify, which comes as part of the
Purify Plus toolkit. Purify instruments your code prior to running it, in order
to hook into all pointer dereferences and all memory allocations and deallo-

94

2. Tools of the Trade

cations made by your code. When you run your code under Purify, you get
a live report of the problems—real and potential—encountered by your code.
And when the program exits, you get a detailed memory leak report. Each
problem is linked directly to the source code that caused the problem, mak-
ing tracking down and fixing these kinds of problems relatively easy. You
can find more information on Purify at http://www-306.ibm.com/software/
awdtools/purify.

Another popular tool is Bounds Checker by CompuWare. It is similar
to Purify in purpose and functionality. You can find more information on
Bounds Checker at https:/ /www.microfocus.com/store/devpartner /bounds
checker.aspx.

2.5 Other Tools

There are a number of other commonly used tools in a game programmer’s
toolkit. We won’t cover them in any depth here, but the following list will
make you aware of their existence and point you in the right direction if you
want to learn more.

* Difference tools. A difference tool, or diff tool, is a program that compares
two versions of a text file and determines what has changed between
them. (See http://en.wikipedia.org/wiki/Diff for a discussion of diff
tools.) Diffs are usually calculated on a line-by-line basis, although mod-
ern diff tools can also show you a range of characters on a changed
line that have been modified. Most version control systems come with
a diff tool. Some programmers like a particular diff tool and config-
ure their version control software to use the tool of their choice. Popu-
lar tools include ExamDiff (http://www.prestosoft.com/edp_examdiff.
asp), AraxisMerge (http://www.araxis.com), WinDiff (available in the
Options Packs for most Windows versions and available from many in-
dependent websites as well), and the GNU diff tools package (http://
www.gnu.org/software/diffutils / diffutils.html).

o Three-way merge tools. When two people edit the same file, two inde-
pendent sets of diffs are generated. A tool that can merge two sets of
diffs into a final version of the file that contains both person’s changes is
called a three-way merge tool. The name “three-way” refers to the fact
that three versions of the file are involved: the original, user A’s version
and user B’s version. (See http:/ /en.wikipedia.org/wiki/3-way_merge
#Three-way_merge for a discussion of two-way and three-way merge
technologies.) Many merge tools come with an associated diff tool. Some

2.5. Other Tools

popular merge tools include AraxisMerge (http://www.araxis.com) and
WinMerge (http://winmerge.org). Perforce also comes with an excellent
three-way merge tool (http://www.perforce.com/perforce/products/
merge.html).

* Hex editors. A hex editor is a program used for inspecting and mod-
ifying the contents of binary files. The data are usually displayed as
integers in hexadecimal format, hence the name. Most good hex editors
can display data as integers from one byte to 16 bytes each, in 32- and
64-bit floating-point format and as ASCII text. Hex editors are particu-
larly useful when tracking down problems with binary file formats or
when reverse-engineering an unknown binary format—both of which
are relatively common endeavors in game engine development circles.
There are quite literally a million different hex editors out there; I've had
good luck with HexEdit by Expert Commercial Software (http://www.
expertcomsoft.com/index.html), but your mileage may vary.

As a game engine programmer you will undoubtedly come across other
tools that make your life easier, but I hope this chapter has covered the main
tools you'll use on a day-to-day basis.

This page intentionally left blank

3
Fundamentals of Software
Engineering for Games

I n this chapter, we'll briefly review the basic concepts of object-oriented pro-
gramming (OOP) and then delve into some advanced topics that should
prove invaluable in any software engineering endeavor (and especially when
creating games). As with Chapter 2, I hope you will not to skip this chapter
entirely; it’s important that we all embark on our journey with the same set of
tools and supplies.

3.1 C++ Review and Best Practices

Because C++ is arguably the most commonly used language in the game
industry, we will focus primarily on C++ in this book. However, most of
the concepts we'll cover apply equally well to any object-oriented program-
ming language. Certainly a great many other languages are used in the game
industry—imperative languages like C; object-oriented languages like C# and
Java; scripting languages like Python, Lua and Perl; functional languages like
Lisp, Scheme and F#, and the list goes on. I highly recommend that every
programmer learn at least two high-level languages (the more the merrier), as

97

98

3. Fundamentals of Software Engineering for Games

well as learning at least some assembly language programming. Every new lan-
guage that you learn further expands your horizons and allows you to think in
a more profound and proficient way about programming overall. That being
said, let’s turn our attention now to object-oriented programming concepts in
general, and C++ in particular.

3.1.1 Brief Review of Object-Oriented Programming

Much of what we’ll discuss in this book assumes you have a solid under-
standing of the principles of object-oriented design. If you're a bit rusty, the
following section should serve as a pleasant and quick review. If you have
no idea what I'm talking about in this section, I recommend you pick up a
book or two on object-oriented programming (e.g., [5]) and C++ in particular
(e.g., [41] and [31]) before continuing.

3.1.1.1 Classes and Objects

A class is a collection of attributes (data) and behaviors (code) that together
form a useful, meaningful whole. A class is a specification describing how
individual instances of the class, known as objects, should be constructed. For
example, your pet Rover is an instance of the class “dog.” Thus, there is a
one-to-many relationship between a class and its instances.

3.1.1.2 Encapsulation

Encapsulation means that an object presents only a limited interface to the out-
side world; the object’s internal state and implementation details are kept hid-
den. Encapsulation simplifies life for the user of the class, because he or she
need only understand the class’ limited interface, not the potentially intricate
details of its implementation. It also allows the programmer who wrote the
class to ensure that its instances are always in a logically consistent state.

3.1.1.3 Inheritance

Inheritance allows new classes to be defined as extensions to preexisting classes.
The new class modifies or extends the data, interface and/or behavior of the
existing class. If class Child extends class Parent, we say that Child in-
herits from or is derived from Parent. In this relationship, the class Parent is
known as the base class or superclass, and the class Child is the derived class
or subclass. Clearly, inheritance leads to hierarchical (tree-structured) relation-
ships between classes.

3.I. C++ Review and Best Practices

99

N 2\ N\

Circle | | Rectangle | | Triangle

Figure 3.1. UML static class diagram depicting a simple class hierarchy.

Inheritance creates an “is-a” relationship between classes. For example,
a circle is a type of shape. So, if we were writing a 2D drawing application,
it would probably make sense to derive our Circle class from a base class
called shape.

We can draw diagrams of class hierarchies using the conventions defined
by the Unified Modeling Language (UML). In this notation, a rectangle rep-
resents a class, and an arrow with a hollow triangular head represents inheri-
tance. The inheritance arrow points from child class to parent. See Figure 3.1
for an example of a simple class hierarchy represented as a UML static class
diagram.

Multiple Inheritance

Some languages support multiple inheritance (MI), meaning that a class can
have more than one parent class. In theory MI can be quite elegant, but in
practice this kind of design usually gives rise to a lot of confusion and techni-
cal difficulties (see http://en.wikipedia.org/wiki/Multiple_inheritance). This
is because multiple inheritance transforms a simple tree of classes into a poten-
tially complex graph. A class graph can have all sorts of problems that never
plague a simple tree—for example, the deadly diamond (http://en.wikipedia.
org/wiki/Diamond_problem), in which a derived class ends up containing
two copies of a grandparent base class (see Figure 3.2). (In C++, virtual inheri-
tance allows one to avoid this doubling of the grandparent’s data.) Multiple
inheritance also complicates casting, because the actual address of a pointer
may change depending on which base class it is cast to. This happens because
of the presence of multiple vtable pointers within the object.

Most C++ software developers avoid multiple inheritance completely or
only permit it in a limited form. A common rule of thumb is to allow only
simple, parentless classes to be multiply inherited into an otherwise strictly
single-inheritance hierarchy. Such classes are sometimes called mix-in classes
because they can be used to introduce new functionality at arbitrary points in
a class tree. See Figure 3.3 for a somewhat contrived example of a mix-in class.

100

3. Fundamentals of Software Engineering for Games

ClassA’s
memory layout:

ClassA

ClassC’s

ClassB’s memory layout:

memory layout:

ClassA

ClassA
ClassC

ClassC

ClassB

\A

ClassD

ClassD’s
memory layout:

ClassA

ClassB

ClassA

ClassC

ClassD

Figure 3.2. “Deadly diamond” in a multiple inheritance hierarchy.

Animator is a hypothetical mix-in
Shape class that adds animation
functionality to whatever class it
is inherited by.

+Draw()
Animator
+Animate()
Circle L —"1 Rectangle Triangle
+Draw() +Draw() +Draw()

Figure 3.3. Example of a mix-in class.

3.I. C++ Review and Best Practices

101

3.1.1.4 Polymorphism

Polymorphism is a language feature that allows a collection of objects of differ-
ent types to be manipulated through a single common interface. The common
interface makes a heterogeneous collection of objects appear to be homoge-
neous, from the point of view of the code using the interface.

For example, a 2D painting program might be given a list of various shapes
to draw on-screen. One way to draw this heterogeneous collection of shapes
is to use a switch statement to perform different drawing commands for each
distinct type of shape.

void drawShapes (std::list<Shapex> shapes)

{
std::list<Shapex>::iterator pShape = shapes.begin();
std::list<Shapex>::iterator pEnd = shapes.end();

for (; pShape != pEnd; pShapet+)
{

switch (pShape->mType)

{

case CIRCLE:

// draw shape as a circle
break;

case RECTANGLE:
// draw shape as a rectangle
break;

case TRIANGLE:
// draw shape as a triangle
break;

The problem with this approach is that the drawShapes () function needs
to “know” about all of the kinds of shapes that can be drawn. This is fine in a
simple example, but as our code grows in size and complexity, it can become
difficult to add new types of shapes to the system. Whenever a new shape
type is added, one must find every place in the code base where knowledge
of the set of shape types is embedded—Ilike this switch statement—and add a
case to handle the new type.

102

3. Fundamentals of Software Engineering for Games

The solution is to insulate the majority of our code from any knowledge of
the types of objects with which it might be dealing. To accomplish this, we can
define classes for each of the types of shapes we wish to support. All of these
classes would inherit from the common base class Shape. A virtual function—
the C++ language’s primary polymorphism mechanism—would be defined
called Draw (), and each distinct shape class would implement this function
in a different way. Without “knowing” what specific types of shapes it has
been given, the drawing function can now simply call each shape’s Draw ()
function in turn.

struct Shape
{

virtual void Draw() = 0; // pure virtual function

}i

struct Circle : public Shape
{

virtual void Draw ()

{

// draw shape as a circle
}i

struct Rectangle : public Shape
{

virtual void Draw ()

{

// draw shape as a rectangle
}i

struct Triangle : public Shape
{

virtual void Draw ()

{

// draw shape as a triangle
i

void drawShapes (std::1list<Shapex> shapes)

{
std::1list<Shapex>::iterator pShape = shapes.begin();
std::list<Shapex>::iterator pEnd = shapes.end();

for (; pShape != pEnd; pShape++)
{

3.I. C++ Review and Best Practices 103

pShape->Draw(); // call virtual function

3.1.1.5 Composition and Aggregation

Composition is the practice of using a group of interacting objects to accomplish
a high-level task. Composition creates a “has-a” or “uses-a” relationship be-
tween classes. (Technically speaking, the “has-a” relationship is called com-
position, while the “uses-a” relationship is called aggregation.) For example, a
spaceship has an engine, which in turn has a fuel tank. Composition/aggrega-
tion usually results in the individual classes being simpler and more focused.
Inexperienced object-oriented programmers often rely too heavily on inheri-
tance and tend to underutilize aggregation and composition.

As an example, imagine that we are designing a graphical user interface
for our game’s front end. We have a class Window that represents any rectan-
gular GUI element. We also have a class called Rectangle that encapsulates
the mathematical concept of a rectangle. A naive programmer might derive
the Window class from the Rectangle class (using an “is-a” relationship).
But in a more flexible and well-encapsulated design, the Window class would
refer to or contain aRectangle (employing a “has-a” or “uses-a” relationship).
This makes both classes simpler and more focused and allows the classes to
be more easily tested, debugged and reused.

3.1.1.6 Design Patterns

When the same type of problem arises over and over, and many different pro-
grammers employ a very similar solution to that problem, we say that a design
pattern has arisen. In object-oriented programming, a number of common de-
sign patterns have been identified and described by various authors. The most
well-known book on this topic is probably the “Gang of Four” book [17].
Here are a few examples of common general-purpose design patterns.

o Singleton. This pattern ensures that a particular class has only one in-
stance (the singleton instance) and provides a global point of access to it.

o [terator. An iterator provides an efficient means of accessing the individ-
ual elements of a collection, without exposing the collection’s underly-
ing implementation. The iterator “knows” the implementation details
of the collection so that its users don’t have to.

® Abstract factory. An abstract factory provides an interface for creating
families of related or dependent classes without specifying their con-
crete classes.

104 3. Fundamentals of Software Engineering for Games

The game industry has its own set of design patterns for addressing prob-
lems in every realm from rendering to collision to animation to audio. In a
sense, this book is all about the high-level design patterns prevalent in mod-
ern 3D game engine design.

3.1.2 Coding Standards: Why and How Much?

Discussions of coding conventions among engineers can often lead to heated
“religious” debates. I do not wish to spark any such debate here, but I will go
so far as to suggest that following at least a minimal set of coding standards
is a good idea. Coding standards exist for two primary reasons.

1. Some standards make the code more readable, understandable and main-
tainable.

2. Other conventions help to prevent programmers from shooting them-
selves in the foot. For example, a coding standard might encourage the
programmer to use only a smaller, more testable and less error-prone
subset of the whole language. The C++ language is rife with possibili-
ties for abuse, so this kind of coding standard is particularly important
when using C++.

In my opinion, the most important things to achieve in your coding conven-
tions are the following.

o Interfaces are king. Keep your interfaces (.h files) clean, simple, minimal,
easy to understand and well-commented.

* Good names encourage understanding and avoid confusion. Stick to intuitive
names that map directly to the purpose of the class, function or vari-
able in question. Spend time up-front identifying a good name. Avoid
a naming scheme that requires programmers to use a look-up table in
order to decipher the meaning of your code. Remember that high-level
programming languages like C++ are intended for humans to read. (If
you disagree, just ask yourself why you don’t write all your software
directly in machine language.)

e Don't clutter the global namespace. Use C++ namespaces or a common
naming prefix to ensure that your symbols don’t collide with symbols
in other libraries. (But be careful not to overuse namespaces, or nest
them too deeply.) Name #defined symbols with extra care; remember
that C++ preprocessor macros are really just text substitutions, so they
cut across all C/C++ scope and namespace boundaries.

¢ Follow C++ best practices. Books like the Effective C++ series by Scott Mey-
ers [31,32], Meyers’ Effective STL [33] and Large-Scale C++ Software Design

3.I. C++ Review and Best Practices

105

by John Lakos [27] provide excellent guidelines that will help keep you
out of trouble.

* Beconsistent. The rule I try to use s as follows: If you're writing a body of
code from scratch, feel free to invent any convention you like—then stick
to it. When editing preexisting code, try to follow whatever conventions
have already been established.

® Make errors stick out. Joel Spolsky wrote an excellent article on coding
conventions, which can be found at http://www.joelonsoftware.com/
articles/Wrong.html. Joel suggests that the “cleanest” code is not neces-
sarily code that looks neat and tidy on a superficial level, but rather the
code that is written in a way that makes common programming errors
easier to see. Joel’s articles are always fun and educational, and I highly
recommend this one.

313 C++1

C++11is the most-recent variant of the C++ programming language standard.
It was approved by the ISO on August 12, 2011, replacing C++03 (which itself
replaced the first standardized version of the language, C++98). C++11 was
formerly known as C++0x.

C++11 introduces a number of new powerful language features. There
are plenty of great online resources and books that describe these features in
detail, so we won't attempt to cover them here. Instead, we'll just survey the
key features to serve as a jumping-off point for further reading. However, we
will cover move semantics in some depth because the concepts are a bit tricky
to understand.

3.1.3.1 auto

The auto keyword is not new to the C++ language, but its meaning has
changed for C++11. In C++03 it is a storage class specifier, along with static,
register and extern. Only one of these four specifiers can be used on a
given varaible, but the default storage class is aut o, meaning that the vari-
able has local scope and should be allocated in a register (if one is available)
or else on the program stack. In C++11, the auto keyword is now used for
variable type inference, meaning it can be used in place of a type specifier—the
compiler infers the type from the right-hand side of the variable’s initializer
expression.

// C++03
float £ = 3.141592f;
__ml28 acc = _mm_setzero_ps|();

106

3. Fundamentals of Software Engineering for Games

std::map<std::string, std::int32_t>::const_iterator it
= myMap.begin();

// C++11
auto £ = 3.141592f;
auto acc = _mm_setzero_ps();

auto it = myMap.begin();
3.13.2 nullptr

In prior versions of C and C++, a NULL pointer was specified by using the
literal 0, sometimes cast to (voidx) or (charx). This lacked type safety
and could cause problems because of C/C++’s implicit integer conversions.
C++11 introduces the type-safe explicit literal value nullptr to represent a
null pointer; it is an instance of the type std: :nullptr_t.

3.1.3.3 Range-Based for Loops

C++11 extends the for statement to support a short-hand “foreach” declara-
tion style. This allows you to iterate over C-style arrays and any other data
structure for which the non-member begin () and end () functions are de-
fined.

// C++03
for (std::map<std::string, std::int32_t>::const_iterator it
= myMap.begin () ;

it !'= myMap.end();
it++)
{
printf ("$s\n", it->first.c_str());
}
// C++11
for (const auto& pair : myMap)

{

printf ("$s\n", pair.first.c_str());

}
3.13.4 override and final

The virtual keyword in C++ can lead to confusing and possibly erroneous
code, because the language makes no distinction between:

* introducing a new virtual function into a class,

* overriding an inherited virtual function, and

¢ implementing a leaf virtual function that is not intended to be overrid-
den by derived classes.

3.I. C++ Review and Best Practices

107

Also, C++ does not require the programmer to use the virtual keyword
on overridden virtual functions at all. To partially rectify this state of affairs,
C++11 introduces two new identifiers which can be tacked on to the end of
virtual function declarations, thereby making the programmer’s intent known
to both the compiler and other readers of the code. The override identifier
indicates that this function is an override of a preexisting virtual inherited
from a base class. The £inal identifier marks the virtual function so it cannot
be overridden by derived classes.

3.1.3.5 Strongly Typed enums

In C++03, an enum exports its enumerators to the surrounding scope, and
the type of its enumerators is determined by the compiler based on the val-
ues present in the enumeration. C++11 introduces a new kind of strongly
typed enumerator, declared using the keywords enum class, which scopes
its enumerators just like a class or struct scopes its members, and permits the
programmer to specify the underlying type.

// C++11
enum class Color : std::int8_t { Red, Green, Blue, White, Black
Color ¢ = Color::Red;

3.1.3.6 Standardized Smart Pointers

In C++11, std::unique_ptr, std::shared_ptr and std::weak_ptr
provide all the facilities we have come to expect from a solid smart pointer fa-
cility (much like the Boost library’s smart pointer system). std: :unique_ptr
is used when we want to maintain sole “ownership” over the object being

pointed to. If we need to maintain multiple pointers to a single object, reference-

counted std: :shared_ptrsshould be used. A std: :weak_ptr acts like a
shared pointer, but it does not contribute to the reference count of the pointed-
to object. As such, weak pointers are generally used as “back pointers” or in
other situations where the pointer “graph” contains cycles.

3.1.3.7 Lambdas

A lambda is an anonymous function. It can be used anywhere a function
pointer, functor or std: :function can be used. The term lambda is bor-
rowed from functional languages like Lisp and Scheme.

Lambdas allow you to write the implementation of a functor inline, rather
than having to declare a named function externally and pass it in. For exam-
ple:

}i

108

3. Fundamentals of Software Engineering for Games

void SomeFunction (const std::vectoré& v)

{
auto pos = std::find_if (std::begin(v),
std::end(v),
[I](int n) { return (n % 2 == 1); });

}

3.1.3.8 Move Semantics and Rvalue References

Prior to C++11, one of the less-efficient aspects of the C++ language was the
way it dealt with copying objects. As an example, consider a function that
multiplies each value within a std: :vector by a fixed multiplier and re-
turns a new vector containing the results.

std::vector<float>
MultiplyAllValues (const std::vector<float>& input,
float multiplier)

std::vector<float> output (input.size());
for (std::vector<float>::const_iterator
it = input.begin();
it !'= input.end();
it++)

output .push_back (xit * multiplier);
}

return output;

void Test ()
{

std::vector<float> v;
// £ill v with some values...
v = MultiplyAllValues (v, 2.0f);

// use v for something...

Any seasoned C++ programmer would balk at this implementation, be-
cause this code makes at least one if not two copies of the std: : vector be-
ing returned by the function. The first copy happens when we return the local
variable output to the calling code—this copy will probably be optimized
away by the compiler via the refurn value optimization. But the second copy
cannot be avoided: It happens when the return value is copied back into the
vector v.

3.I. C++ Review and Best Practices

109

Sometimes copying data is necessary and desirable. But in this (rather
contrived) example, the copying is totally unnecessary because the source ob-
ject (i.e., the vector returned by the function) is a temporary object. It will be
thrown away immediately after being copied into v. Most good C++ pro-
grammers (again, prior to C++11) would probably suggest that we rewrite
the function as follows to avoid the unnecessary copying;:

void MultiplyAllValues (std::vector<float>& output,
const std::vector<float>& input,
float multiplier)

output.resize(0);
output.reserve (input.size());

for (std::vector<float>::const_iterator it = input.begin();
it != input.end();
it++)

output.push_back (xit » multiplier);
}

Or we might consider making the function less general-purpose by having it
modify its input in place.

C++11 provides a mechanism that allows us to rectify these kinds of copy-
ing problems without having to change the function signature to pass the out-
put object into the function by pointer or reference. This mechanism is known
as move semantics, and it depends on being able to tell the difference between
copying an lvalue object and copying an rvalue (temporary) object.

In C and C++, an lvalue represents an actual storage location in the com-
puter’s registers or memory. An rovalue is a temporary data object that ex-
ists logically but doesn’t necessarily occupy any memory. When we write
int a = 7; thevariable a is an lvalue, but the literal 7 is an rvalue. You can
assign to an lvalue, but you can’t assign to an rvalue.

In C++03 and prior, there was no way to handle copying of rvalues differ-
ently from copying lvalues. Therefore, the copy constructor and assignment
operator had to assume the worst and treat everything like an Ivalue. In the
case of copying a container object like a std: :vector, the copy construc-
tor and assignment operator would have to perform a deep copy—copying not
only the container object itself but all of the data it contains.

In C++11, we can declare a variable to be an rvalue reference by using a
double ampersand instead of a single ampersand (e.g., int&& rvalueRef
instead of int& lvalueRef). This in turn allows us to write two overloaded

110

3. Fundamentals of Software Engineering for Games

variants of both the copy constructor and the assignment operator—one for
lvalues and one for rvalues. When we copy an lvalue, we do a full deep copy
as always. But when we copy an rvalue (i.e., a temporary object), we needn’t
perform a deep copy. Instead, we can simply “steal” the contents of the tem-
porary object and move them directly into the destination object—hence the
term move semantics. For example, the copy constructors and assignment op-
erators for a simplified implementation of std: :vector could be written
something like this:

namespace std
{
template<typename T>
class vector
{
private:
Tx m_array;
int m_count;

public:

// lvalue copy ctor
vector<T> (const vector<T>& original)
m_array (nullptr)
, m_count (original.size())

if (m_count != 0)

{
m_array = new T[m_count];
if (m_array != nullptr)

memcpy (m_array, original.m_array,
m_count * sizeof (T));
else
m_count = 0;

// rvalue "move" ctor
vector<T> (vector<T>&& original)
m_array (original.m_array) // steal the data
, m_count (original.m_count)

original.m_array = nullptr; // stolen goods!
original.m_count 0;

3.I. C++ Review and Best Practices m

// lvalue assignment operator
vector<T>& operator=(const vector<T>& original)
{

if (this != &original)

{

m_array = nullptr;

m_count = original.size();

if (m_count != 0)

{
m_array = new T[m_count];
if (m_array != nullptr)

memcpy (m_array, original.m_array,
m_count * sizeof(T));
else
m_count = 0;

}

return *this;

// rvalue "move" assignment operator
vector<T>& operator=(vector<T>&& original)
{
if (this != &original)
{
m_array = original.m_array; // steal the data
m_count = original.m_count;

original.m_array = nullptr; // stolen goods!
0;

original.m_count

}

return *this;

//
}i

There is one additional subtlety here. An rvalue reference is itself an Ivalue
(not an rvalue as one might think). In other words, you can assign to or modify
anrvalue reference variable. That’s what allowsustosetoriginal .m_array
to nullptr in the example code above. As such, if you want to explicitly in-
voke a move constructor or move assignment operator on an rvalue reference
variable, you have to wrap it in a call to std: :move () to force the compiler

12

3. Fundamentals of Software Engineering for Games

into thinking your rvalue reference is an rvalue. Confused yet? Never fear,
with a bit of practice it will all make sense. For more information on move se-
mantics, see http://www.cprogramming.com/c++11/rvalue-references-and
-move-semantics-in-c++11.html

3.2 Data, Code and Memory

3.2.1 Numeric Representations

Numbers are at the heart of everything that we do in game engine develop-
ment (and software development in general). Every software engineer should
understand how numbers are represented and stored by a computer. This

section will provide you with the basics you'll need throughout the rest of the
book.

3.2.1.1 Numeric Bases

People think most naturally in base ten, also known as decimal notation. In
this notation, ten distinct digits are used (0 through 9), and each digit from
right to left represents the next highest power of 10. For example, the number
7803 = (7 x 10%) + (8 x 10%) + (0 x 10') + (3 x 10°) = 7000 + 800 + 0 + 3.

In computer science, mathematical quantities such as integers and real-
valued numbers need to be stored in the computer’s memory. And as we
know, computers store numbers in binary format, meaning that only the two
digits 0 and 1 are available. We call this a base-two representation, because
each digit from right to left represents the next highest power of 2. Com-
puter scientists sometimes use a prefix of “Ob” to represent binary numbers.
For example, the binary number 0b1101 is equivalent to decimal 13, because
0b1101 = (1 x2%) 4+ (1 x22) +(0x2) + (1 x2°) =84+4+0+1=13.

Another common notation popular in computing circles is hexadecimal, or
base 16. In this notation, the 10 digits 0 through 9 and the six letters A through
F are used; the letters A through F replace the decimal values 10 through 15,
respectively. A prefix of “0x” is used to denote hex numbers in the C and C++
programming languages. This notation is popular because computers gener-
ally store data in groups of 8 bits known as bytes, and since a single hexadec-
imal digit represents 4 bits exactly, a pair of hex digits represents a byte. For
example, the value OxFF = Ob11111111 = 255 is the largest number that can
be stored in 8 bits (1 byte). Each digit in a hexadecimal number, from right
to left, represents the next power of 16. So, for example, 0xB052 = (11 x 163)
+(0x16%)+(5x 161) +(2x 16°) = (11 x 4096) + (0 x 256) + (5 x 16) + (2x 1) =
45,138.

3.2. Data, Code and Memory

13

3.2.1.2 Signed and Unsigned Integers

In computer science, we use both signed and unsigned integers. Of course,
the term “unsigned integer” is actually a bit of a misnomer—in mathematics,
the whole numbers or natural numbers range from 0 (or 1) up to positive infinity,
while the integers range from negative infinity to positive infinity. Neverthe-
less, we’ll use computer science lingo in this book and stick with the terms
“signed integer” and “unsigned integer.”

Most modern personal computers and game consoles work most easily
with integers that are 32 bits or 64 bits wide (although 8- and 16-bit integers
are also used a great deal in game programming as well). To represent a
32-bit unsigned integer, we simply encode the value using binary notation
(see above). The range of possible values for a 32-bit unsigned integer is
0x00000000 (0) to OXFFFFFFFF (4,294,967,295).

To represent a signed integer in 32 bits, we need a way to differentiate be-
tween positive and negative vales. One simple approach called the sign and
magnitude encoding reserves the most significant bit as a sign bit. When this
bit is zero, the value is positive, and when it is one, the value is negative. This
leaves us 31 bits to represent the magnitude of the value, effectively cutting
the range of possible magnitudes in half (but allowing both positive and neg-
ative forms of every distinct magnitude, including zero).

Most microprocessors use a slightly more efficient technique for encoding
negative integers, called two’s complement notation. This notation has only
one representation for the value zero, as opposed to the two representations
possible with simple sign bit (positive zero and negative zero). In 32-bit two’s
complement notation, the value OXFFFFFFFF is interpreted to mean —1, and
negative values count down from there. Any value with the most significant
bit set is considered negative. So values from 0x00000000 (0) to Ox7FFFFFFF
(2,147,483,647) represent positive integers, and 0x80000000 (—2,147,483,648)
to OXFFFFFFFF (—1) represent negative integers.

3.2.1.3 Fixed-Point Notation

Integers are great for representing whole numbers, but to represent fractions
and irrational numbers we need a different format that expresses the concept
of a decimal point.

One early approach taken by computer scientists was to use fixed-point no-
tation. In this notation, one arbitrarily chooses how many bits will be used
to represent the whole part of the number, and the rest of the bits are used
to represent the fractional part. As we move from left to right (i.e., from the
most significant bit to the least significant bit), the magnitude bits represent

114

3. Fundamentals of Software Engineering for Games

sign

magnitude (16 bits) fraction (15 bits)

lo‘o‘o‘o‘o‘o‘o‘o‘1‘0‘1‘0‘1‘1‘0‘1‘0‘1‘0‘0‘0‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘ =_173.25

31

15 0

0x80

0x56 0xA0 0x00

Figure 3.4. Fixed-point notation with 16-bit magnitude and 16-bit fraction.

decreasing powers of two (..., 16, 8, 4, 2, 1), while the fractional bits represent
decreasing inverse powers of two (%, i, é, %, ...). For example, to store the
number —173.25 in 32-bit fixed-point notation with one sign bit, 16 bits for the
magnitude and 15 bits for the fraction, we first convert the sign, the whole part
and the fractional part into their binary equivalents individually (negative =
0b1, 173 = 0b0000000010101101 and 0.25 = 4 = 0b010000000000000). Then we
pack those values together into a 32-bit integer. The final result is 0x8056 A000.
This is illustrated in Figure 3.4.

The problem with fixed-point notation is that it constrains both the range
of magnitudes that can be represented and the amount of precision we can
achieve in the fractional part. Consider a 32-bit fixed-point value with 16 bits
for the magnitude, 15 bits for the fraction and a sign bit. This format can
only represent magnitudes up to £65,535, which isn’t particularly large. To
overcome this problem, we employ a floating-point representation.

3.2.1.4 Floating-Point Notation

In floating-point notation, the position of the decimal place is arbitrary and
is specified with the help of an exponent. A floating-point number is broken
into three parts: the mantissa, which contains the relevant digits of the number
on both sides of the decimal point, the exponent, which indicates where in that
string of digits the decimal point lies, and a sign bit, which of course indicates
whether the value is positive or negative. There are all sorts of different ways
to lay out these three components in memory, but the most common standard
is IEEE-754. It states that a 32-bit floating-point number will be represented
with the sign in the most significant bit, followed by 8 bits of exponent and
finally 23 bits of mantissa.

The value v represented by a sign bit s, an exponent e and a mantissa m is
v=sx 207120 x (1 4+ m).

The sign bit s has the value +1 or —1. The exponent ¢ is biased by 127 so
that negative exponents can be easily represented. The mantissa begins with
an implicit 1 that is not actually stored in memory, and the rest of the bits are

3.2. Data, Code and Memory 115

sign exponent (8 bits) mantissa (23 bits)

lo‘1‘1‘1‘1‘1‘0‘0‘0‘1‘o‘ = 0.15625

31 23 0

Figure 3.5. IEEE-754 32-bit floating-point format.

interpreted as inverse powers of two. Hence the value represented is really
1 + m, where m is the fractional value stored in the mantissa.

For example, the bit pattern shown in Figure 3.5 represents the value
0.15625, because s = 0 (indicating a positive number), e = 0b01111100 = 124
and m = 0b0100... = 0 x 271 4+ 1 x 272 = 1. Therefore,

v=sx 27120 » (1 4+ m)
= (+1) x 20247127 5 (1 4 1y
=273 x
1.5

=871
=0.125 x 1.25 = 0.15625.

5
1

The Trade-Off between Magnitude and Precision

The precision of a floating-point number increases as the magnitude decreases,
and vice versa. This is because there are a fixed number of bits in the mantissa,
and these bits must be shared between the whole part and the fractional part
of the number. If a large percentage of the bits are spent representing a large
magnitude, then a small percentage of bits are available to provide fractional
precision. In physics the term significant digits is typically used to describe this
concept (http://en.wikipedia.org/wiki/Significant_digits).

To understand the trade-off between magnitude and precision, let’s look
at the largest possible floating-point value, FLT_MAX ~ 3.403 x 10°®, whose
representation in 32-bit IEEE floating-point format is Ox7F7FFFFF. Let’s break
this down:

¢ The largest absolute value that we can represent with a 23-bit mantissa
is OxOOFFFFFF in hexadecimal, or 24 consecutive binary ones—that’s 23
ones in the mantissa, plus the implicit leading one.

* An exponent of 255 has a special meaning in the IEEE-754 format—it is
used for values like not-a-number (NaN) and infinity—so it cannot be
used for regular numbers. Hence the maximum eight-bit exponent is
actually 254, which translates into 127 after subtracting the implicit bias
of 127.

6 3. Fundamentals of Software Engineering for Games

So FLT_MAX is 0xO0FFFFFF x 2127 = OxFFFFFF00000000000000000000000000.
In other words, our 24 binary ones were shifted up by 127 bit positions, leav-
ing 127 — 23 = 104 binary zeros (or 104/4 = 26 hexadecimal zeros) after the
least significant digit of the mantissa. Those trailing zeros don’t correspond to
any actual bits in our 32-bit floating-point value—they just appear out of thin
air because of the exponent. If we were to subtract a small number (where
“small” means any number composed of fewer than 26 hexadecimal digits)
from FLT_MAX, the result would still be FLT_MAX, because those 26 least sig-
nificant hexadecimal digits don't really exist!

The opposite effect occurs for floating-point values whose magnitudes are
much less than one. In this case, the exponent is large but negative, and the
significant digits are shifted in the opposite direction. We trade the ability to
represent large magnitudes for high precision. In summary, we always have
the same number of significant digits (or really significant bits) in our floating-
point numbers, and the exponent can be used to shift those significant bits
into higher or lower ranges of magnitude.

Another subtlety to notice is that there is a finite gap between zero and the
smallest nonzero value we can represent with any floating-point notation. The
smallest nonzero magnitude we can represent is FLT_MIN = 27126 ~ 1.175 x
10738, which has a binary representation of 0x00800000 (i.e., the exponent is
0x01, or —126 after subtracting the bias, and the mantissa is all zeros except
for the implicit leading one). The next smallest valid value is zero, so there is
a finite gap between the values ~-FLT_MIN and +FLT_MIN. Put another way,
the real number line is quantized when using a floating-point representation.

The gap around zero can be filled by employing an extension to the floating-
point representation known as denormalized values, also known as subnormal
values. When this extension is used, any floating-point value with a biased
exponent of 0 is interpreted as a subnormal number. The exponent is treated
as if it had been a 1 instead of a 0, and the implicit leading 1 that normally
sits in front of the bits of the mantissa is changed to a 0. This has the effect of
filling the gap between -FLT_MIN and +FLT_MIN with a linear sequence of
subnormal values. However, the real number line is still quantized of course.
The benefit of using subnormal values is merely that it provides greater pre-
cision near zero by filling the gap between ~-FLT_MIN and +FLT_MIN with a
finite sequence of discrete values.

For a particular floating-point representation, the machine epsilon is defined
to be the smallest floating-point value ¢ that satisfies the equation, 1 + ¢ # 1.
For an IEEE-754 floating-point number, with its 23 bits of precision, the value
of £ is 2723, which is approximately 1.192 x 10~". The most significant digit
of ¢ falls just inside the range of significant digits in the value 1.0, so adding

3.2. Data, Code and Memory

17

any value smaller than € to 1.0 has no effect. In other words, any new bits
contributed adding a value smaller than ¢ will get “chopped off” when we try
to fit the sum into a mantissa with only 23 bits.

The concepts of limited precision and the machine epsilon have real im-
pacts on game software. For example, let’s say we use a floating-point vari-
able to track absolute game time in seconds. How long can we run our game
before the magnitude of our clock variable gets so large that adding 1/30%" of
a second to it no longer changes its value? The answer is roughly 12.9 days.
That’s longer than most games will be left running, so we can probably get
away with using a 32-bit floating-point clock measured in seconds in a game.
But clearly it’s important to understand the limitations of the floating-point
format so that we can predict potential problems and take steps to avoid them
when necessary.

IEEE Floating-Point Bit Tricks

See [7, Section 2.1] for a few really useful IEEE floating-point “bit tricks” that
can make floating-point calculations lightning fast.

3.2.1.5 Atomic Data Types

As you know, C and C++ provide a number of atomic data types. The C
and C++ standards provide guidelines on the relative sizes and signedness of
these data types, but each compiler is free to define the types slightly differ-
ently in order to provide maximum performance on the target hardware.

® char. A char is usually 8 bits and is generally large enough to hold an
ASCII or UTF-8 character (see Section 5.4.4.1). Some compilers define
char to be signed, while others use unsigned chars by default.

* int, short, long. An int is supposed to hold a signed integer value
that is the most efficient size for the target platform:; it is usually defined
to be 32 bits wide on a 32-bit CPU architecture, such as Pentium 4 or
Xeon, and 64 bits wide on a 64-bit architecture, such as Intel Core i7,
although the size of an int is also dependent upon other factors such as
compiler options and the target operating system. A short is intended
to be smaller than an int and is 16 bits on many machines. A long is
as large as or larger than an int and may be 32 or 64 bits wide, or even
wider, again depending on CPU architecture, compiler options and the
target OS.

* float. Onmost modern compilers,a f1loat isa 32-bit IEEE-754 floating-
point value.

118

3. Fundamentals of Software Engineering for Games

* double. A double is a double-precision (i.e., 64-bit) IEEE-754 floating-
point value.

* bool. Abool is a true/false value. The size of a bool varies widely
across different compilers and hardware architectures. It is never imple-
mented as a single bit, but some compilers define it to be 8 bits while
others use a full 32 bits.

Compiler-Specific Sized Types

The standard C/C++ atomic data types were designed to be portable and
therefore nonspecific. However, in many software engineering endeavors,
including game engine programming, it is often important to know exactly
how wide a particular variable is. The Visual Studio C/C++ compiler defines
the following extended keywords for declaring variables that are an explicit
number of bits wide: __int8,_int16,__int32and__inté64.

SIMD Types

The CPUs on many modern computers and game consoles have a specialized
type of arithmetic logic unit (ALU) referred to as a vector processor or vector
unit. A vector processor supports a form of parallel processing known as sin-
gle instruction, multiple data (SIMD), in which a mathematical operation is per-
formed on multiple quantities in parallel, using a single machine instruction.
In order to be processed by the vector unit, two or more quantities are packed
into a 64- or 128-bit CPU register. In game programming, the most commonly
used SIMD register format packs four 32-bit IEEE-754 floating-point quanti-
ties into a 128-bit SIMD register. This format allows us to perform calculations
such as vector dot products and matrix multiplications much more efficiently
than would be possible with a SISD (single instruction, single data) ALU.
Each microprocessor has a different name for its SIMD instruction set, and
the compilers that target those microprocessors use a custom syntax to declare
SIMD variables. For example, on a Pentium class CPU, the SIMD instruction
set is known as SSE (streaming SIMD extensions), and the Microsoft Visual
Studio compiler provides the built-in data type __m128 to represent a four-
float SIMD quantity. The PowerPC class of CPUs used on the PlayStation 3
and Xbox 360 calls its SIMD instruction set Altivec, and the Gnu C++ compiler
uses the syntax vector float to declare a packed four-float SIMD variable.
We'll discuss how SIMD programming works in more detail in Section 4.7.

Portable Sized Types

Most other compilers have their own “sized” data types, with similar seman-
tics but slightly different syntax. Because of these differences between compil-

3.2. Data, Code and Memory 19

ers, most game engines achieve source code portability by defining their own
custom atomic data types. For example, at Naughty Dog we use the following
atomic types:

* F32isa 32-bit IEEE-754 floating-point value.

* U8,18,Ul6, I16,U32, I32,U64 and I64 are unsigned and signed 8-,
16-, 32- and 64-bit integers, respectively.

* VF32 represents a packed four-float SIMD value.

<cstdint>

The C++11 standard library introduces a set of standardized sized integer
types. They are declared in the <cstdint> header, and they include
the signed types std::int8_t, std::intl6_t, std::int32_t and
std::int64_t and the unsigned types std::uint8_t, std::uintlé6_t,
std::uint32_t and std::uint64_t.

OGRE's Atomic Data Types

OGRE defines a number of atomic types of its own. Ogre: :uint8, Ogre: :
uintl6 and Ogre: :uint32 are the basic unsigned sized integral types.

Ogre: :Real defines a real floating-point value. It is usually defined to be
32 bits wide (equivalent to a f1oat), but it can be redefined globally to be 64
bits wide (like a double) by defining the preprocessor macro OGRE_DOUBLE
_PRECISION to 1. This ability to change the meaning of Ogre: :Real is
generally only used if one’s game has a particular requirement for double-
precision math, which is rare. Graphics chips (GPUs) always perform their
math with 32-bit or 16-bit floats, the CPU/FPU is also usually faster when
working in single-precision, and SIMD vector instructions operate on 128-bit
registers that contain four 32-bit floats each. Hence, most games tend to stick
to single-precision floating-point math.

The data types Ogre: :uchar, Ogre: :ushort, Ogre: :uint and Ogre
::ulong are just shorthand notations for C/C++’s unsigned char,
unsigned short and unsigned long, respectively. As such, they are no
more or less useful than their native C/C++ counterparts.

The types Ogre: :Radian and Ogre: :Degree are particularly interest-
ing. These classes are wrappers around a simple Ogre: :Real value. The
primary role of these types is to permit the angular units of hard-coded literal
constants to be documented and to provide automatic conversion between
the two unit systems. In addition, the type Ogre: : Angle represents an angle
in the current “default” angle unit. The programmer can define whether the
default will be radians or degrees when the OGRE application first starts up.

120

3. Fundamentals of Software Engineering for Games

Perhaps surprisingly, OGRE does not provide a number of sized atomic
data types that are commonplace in other game engines. For example, it de-
fines no signed 8-, 16- or 64-bit integral types. If you are writing a game engine
on top of OGRE, you will probably find yourself defining these types manu-
ally at some point.

3.2.1.6 Multibyte Values and Endianness

Values that are larger than eight bits (one byte) wide are called multibyte quan-
tities. They’re commonplace on any software project that makes use of in-
tegers and floating-point values that are 16 bits or wider. For example, the
integer value 4660 = 0x1234 is represented by the two bytes 0x12 and 0x34.
We call 0x12 the most significant byte (MSB) and 0x34 the least significant
byte (LSB). In a 32-bit value, such as 0OXABCD1234, the MSB is 0xAB and the
LSB is 0x34. The same concepts apply to 64-bit integers and to 32- and 64-bit
floating-point values as well.

Multibyte integers can be stored into memory in one of two ways, and
different microprocessors may differ in their choice of storage method (see
Figure 3.6).

¢ Little-endian. If a microprocessor stores the least significant byte (LSB) of
a multibyte value at a lower memory address than the most significant
byte (MSB), we say that the processor is little-endian. On a little-endian
machine, the number OxABCD1234 would be stored in memory using
the consecutive bytes 0x34, 0x12, 0xCD, OxAB.

* Big-endian. If a microprocessor stores the most significant byte of a multi-
byte value at a lower memory address than the least significant byte,

U32 value = 0xABCD1234;
U8* pBytes = (U8%*)&value;

Big-endian Little-endian
pBytes + 0x0 O0xAB pBytes + 0x0 0x34
pBytes + 0x1 0xCD pBytes + 0x1 0x12
pBytes + 0x2 0x12 pBytes + 0x2 0xCD
pBytes + 0x3 0x34 pBytes + 0x3 0xAB

Figure 3.6. Big- and little-endian representations of the value OXABCDI234.

3.2. Data, Code and Memory

121

we say that the processor is big-endian. On a big-endian machine, the
number 0OxABCD1234 would be stored in memory using the bytes 0xAB,
0xCD, 0x12, 0x34.

Most programmers don’t need to think much about endianness. However,
when you're a game programmer, endianness can become a bit of a thorn in
your side. This is because games are usually developed on a Windows or Linux
machine running an Intel Pentium processor (which is little-endian), but run
on a console such as the Wii, Xbox 360 or PlayStation 3—all three of which
utilize a variant of the PowerPC processor (which can be configured to use
either endianness, but is big-endian by default). Now imagine what happens
when you generate a data file for consumption by your game engine on an
Intel processor and then try to load that data file into your engine running on
a PowerPC processor. Any multibyte value that you wrote out into that data
file will be stored in little-endian format. But when the game engine reads
the file, it expects all of its data to be in big-endian format. The result? You'll
write OXABCD1234, but you'll read 0x3412CDAB, and that’s clearly not what
you intended!

There are at least two solutions to this problem.

1. You could write all your data files as text and store all multibyte num-
bers as sequences of decimal or hexadecimal digits, one character (one
byte) per digit. This would be an inefficient use of disk space, but it
would work.

2. You can have your tools endian-swap the data prior to writing it into
a binary data file. In effect, you make sure that the data file uses the
endianness of the target microprocessor (the game console), even if the
tools are running on a machine that uses the opposite endianness.

Integer Endian-Swapping

Endian-swapping an integer is not conceptually difficult. You simply start at
the most significant byte of the value and swap it with the least significant
byte; you continue this process until you reach the halfway point in the value.
For example, 0xA7891023 would become 0x231089A7.

The only tricky part is knowing which bytes to swap. Let’s say you're writ-
ing the contents of a C struct or C++ class from memory out to a file. To
properly endian-swap this data, you need to keep track of the locations and
sizes of each data member in the struct and swap each one appropriately
based on its size. For example, the structure

122 3. Fundamentals of Software Engineering for Games

struct Example

{

U32 m_a;
Uule m_b;
Uu32 m_c;

b
might be written out to a data file as follows:

void writeExampleStruct (Example& ex, Streamé& stream)
{
stream.writeU32 (swapU32 (ex.m_a));
stream.writeUl6 (swapUl6 (ex.m_Db));
stream.writeU32 (swapU32 (ex.m_c));

}
and the swap functions might be defined like this:

inline Ul6 swapUl6 (Ul6 value)
{
return ((value & 0x00FF) << 8)
| ((value & OxFF00) >> 8);
}

inline U32 swapU32(U32 value)
{

return ((value & 0x000000FF) << 24)
| ((value & 0x0000FF00) << 8)
| ((value & O0xO0FFO0000) >> 8)
| ((value & OxFF000000) >> 24);

}

You cannot simply cast the Example object into an array of bytes and
blindly swap the bytes using a single general-purpose function. We need to
know both which data members to swap and how wide each member is, and each
data member must be swapped individually.

Floating-Point Endian-Swapping

Let’s take a brief look at how floating-point endian-swapping differs from in-
teger endian-swapping. As we’ve seen, an IEEE-754 floating-point value has
a detailed internal structure involving some bits for the mantissa, some bits
for the exponent and a sign bit. However, you can endian-swap it just as if
it were an integer, because bytes are bytes. You can reinterpret floats as inte-
gers by using C++’s reinterpret_cast operator on a pointer to the float;
this is known as type punning. But punning can lead to optimization bugs

3.2. Data, Code and Memory

123

when strict aliasing is enabled. (See http://www.cocoawithlove.com/2008/
04 /using-pointers-to-recast-in-c-is-bad.html for an excellent description of
this problem.) One convenient approach is to use a union, as follows:

union U32F32

{
U32 m_asU32;
F32 m_askF32;

}i

inline F32 swapF32(F32 value)

{
U32F32 u;
u.m_askF32 = value;

// endian-swap as integer
u.m_asU32 = swapU32 (u.m_asU32);

return u.m_askF32;

3.2.2 Declarations, Definitions and Linkage
3.2.2.1 Translation Units Revisited

As we saw in Chapter 2, a C or C++ program is comprised of translation units.
The compiler translates one .cpp file at a time, and for each one it generates
an output file called an object file (.o or .obj). A .cpp file is the smallest unit of
translation operated on by the compiler; hence, the name “translation unit.”
An object file contains not only the compiled machine code for all of the func-
tions defined in the .cpp file, but also all of its global and static variables.
In addition, an object file may contain unresolved references to functions and
global variables defined in other .cpp files.

The compiler only operates on one translation unit at a time, so whenever
it encounters a reference to an external global variable or function, it must
“go on faith” and assume that the entity in question really exists, as shown
in Figure 3.7. It is the linker’s job to combine all of the object files into a
final executable image. In doing so, the linker reads all of the object files and
attempts to resolve all of the unresolved cross-references between them. If it
is successful, an executable image is generated containing all of the functions,
global variables and static variables, with all cross-translation-unit references
properly resolved. This is depicted in Figure 3.8.

The linker’s primary job is to resolve external references, and in this ca-
pacity it can generate only two kinds of errors:

124 3. Fundamentals of Software Engineering for Games

foo.cpp bar.cpp

—» extern U32 gGlobalC; ™ extern U32 gGlobala;

™ extern U32 gGlobalB;
extern void f();

gGlobalC = 5.3f;
//

Figure 3.7. Unresolved external references in two translation units.

foo.cpp bar.cpp

extern U32 gGlobalC; extern U32 gGlobalA;
extern U32 gGlobalB;

U32 gGlobalh; extern void f();

=
U32 gGlobalB;

void g ()
{
™~ A sco
/] ™~ 032 a = golobala;
gGlobalC = 5.3f; ~ e //
Zanen T f0;
} ™ :

gGlobalB = 0;

\//
}

Figure 3.8. Fully resolved external references after successful linking.

— Multiply-Defined Symbol —

foo.cpp [bar.cpp | spam.cpp

extern U32 gGlobalC; extern U32 gGlobalA; ‘
extern U32 gGlobalB;

U32 gGlobalh; | extern void f();

void g()
{
7 N /e
SN ~U32 a = gGlobala;”
g oba = //
gGlobalD = £0);
/. /.
} gGlobalB = 0;
- }
???

Unresolved Reference

Figure 3.9. The two most common linker errors.

3.2. Data, Code and Memory 125

1. The target of an extern reference might not be found, in which case the
linker generates an “unresolved symbol” error.

2. The linker might find more than one variable or function with the same
name, in which case it generates a “multiply defined symbol” error.

These two situations are shown in Figure 3.9.

3.2.2.2 Declaration versus Definition

In the C and C++ languages, variables and functions must be declared and
defined before they can be used. It is important to understand the difference
between a declaration and a definition in C and C++.

* A declaration is a description of a data object or function. It provides the
compiler with the name of the entity and its data type or function signature
(i.e., return type and argument type(s)).

* A definition, on the other hand, describes a unique region of memory in
the program. This memory might contain a variable, an instance of a
struct or class or the machine code of a function.

In other words, a declaration is a reference to an entity, while a definition
is the entity itself. A definition is always a declaration, but the reverse is not
always the case—it is possible to write a pure declaration in C and C++ that
is not a definition.

Functions are defined by writing the body of the function immediately after
the signature, enclosed in curly braces:

foo.cpp

// definition of the max () function
int max(int a, int Db)
{

return (a > b) ? a : b;

}

// definition of the min () function
int min(int a, int Db)
{

return (a <= b) ? a : b;

}

A pure declaration can be provided for a function so that it can be used in
other translation units (or later in the same translation unit). This is done by

126

3. Fundamentals of Software Engineering for Games

writing a function signature followed by a semicolon, with an optional prefix
of extern:

foo.h

extern int max(int a, int b); // a function declaration

int min(int a, int b); // also a declaration (the extern
// 1is optional/assumed)

Variables and instances of classes and structs are defined by writing the
data type followed by the name of the variable or instance and an optional
array specifier in square brackets:

foo.cpp

// All of these are variable definitions:
U32 gGloballInteger = 5;

F32 gGlobalFloatArray[1l6];

MyClass gGlobalInstance;

A global variable defined in one translation unit can optionally be declared for
use in other translation units by using the extern keyword:

foo.h

// These are all pure declarations:
extern U32 gGloballnteger;

extern F32 gGlobalFloatArray[1l6];
extern MyClass gGlobalInstance;

Multiplicity of Declarations and Definitions

Not surprisingly, any particular data object or function in a C/C++ program
can have multiple identical declarations, but each can have only one definition.
If two or more identical definitions exist in a single translation unit, the com-
piler will notice that multiple entities have the same name and flag an er-
ror. If two or more identical definitions exist in different translation units, the
compiler will not be able to identify the problem, because it operates on one
translation unit at a time. But in this case, the linker will give us a “multiply
defined symbol” error when it tries to resolve the cross-references.

Definitions in Header Files and Inlining

It is usually dangerous to place definitions in header files. The reason for this
should be pretty obvious: if a header file containing a definition is # included

3.2. Data, Code and Memory

127

into more than one .cpp file, it’s a sure-fire way of generating a “multiply
defined symbol” linker error.

Inline function definitions are an exception to this rule, because each invo-
cation of an inline function gives rise to a brand new copy of that function’s
machine code, embedded directly into the calling function. In fact, inline func-
tion definitions must be placed in header files if they are to be used in more
than one translation unit. Note that it is not sufficient to tag a function decla-
ration with the inline keyword in a .h file and then place the body of that
function in a .cpp file. The compiler must be able to “see” the body of the
function in order to inline it. For example:

foo.h

// This function definition will be inlined properly.
inline int max(int a, int b)
{

return (a > b) ? a : b;

}

// This declaration cannot be inlined because the
// compiler cannot "see" the body of the function.
inline int min(int a, int b);

foo.cpp

// The body of min() is effectively "hidden" from the
// compiler, so it can ONLY be inlined within foo.cpp.
int min(int a, int b)
{

return (a <= b) ? a : b;

}

The inline keyword is really just a hint to the compiler. It does a cost/
benefit analysis of each inline function, weighing the size of the function’s
code versus the potential performance benefits of inling it, and the compiler
gets the final say as to whether the function will really be inlined or not. Some
compilers provide syntax like ___forceinline, allowing the programmer
to bypass the compiler’s cost/benefit analysis and control function inlining
directly.

3.2.2.3 Linkage

Every definition in C and C++ has a property known as linkage. A definition
with external linkage is visible to and can be referenced by translation units

128

3. Fundamentals of Software Engineering for Games

other than the one in which it appears. A definition with internal linkage can
only be “seen” inside the translation unit in which it appears and thus cannot
be referenced by other translation units. We call this property linkage because
it dictates whether or not the linker is permitted to cross-reference the entity
in question. So, in a sense, linkage is the translation unit’s equivalent of the
public: and private: keywords in C++ class definitions.

By default, definitions have external linkage. The stat ic keyword is used
to change a definition’s linkage to internal. Note that two or more identical
static definitions in two or more different .cpp files are considered to be
distinct entities by the linker (just as if they had been given different names),
so they will not generate a “multiply defined symbol” error. Here are some
examples:

foo.cpp

// This variable can be used by other .cpp files
// (external linkage).
U32 gExternalVariable;

// This variable is only usable within foo.cpp (internal
// linkage) .
static U32 gInternalVariable;

// This function can be called from other .cpp files
// (external linkage).
void externalFunction ()
{
//

// This function can only be called from within foo.cpp
// (internal linkage).
static void internalFunction ()
{
//

bar.cpp

// This declaration grants access to foo.cpp's variable.
extern U32 gExternalVariable;

// This 'gInternalVariable' is distinct from the one
// defined in foo.cpp —-- no error. We could just as
// well have named it gInternalVariableForBarCpp —-- the

3.2. Data, Code and Memory

129

// net effect is the same.
static U32 gInternalVariable;

// This function is distinct from foo.cpp's
// version —-— no error. It acts as if we had named it
// internalFunctionForBarCpp () .
static void internalFunction ()
{
//
}

// ERROR -- multiply defined symbol!
volid externalFunction ()
{
//
}

Technically speaking, declarations don’t have a linkage property at all, be-
cause they do not allocate any storage in the executable image; therefore, there
is no question as to whether or not the linker should be permitted to cross-
reference that storage. A declaration is merely a reference to an entity defined
elsewhere. However, it is sometimes convenient to speak about declarations
as having internal linkage, because a declaration only applies to the transla-
tion unit in which it appears. If we allow ourselves to loosen our terminology
in this manner, then declarations always have internal linkage—there is no
way to cross-reference a single declaration in multiple .cpp files. (If we put a
declaration in a header file, then multiple .cpp files can “see” that declaration,
but they are in effect each getting a distinct copy of the declaration, and each
copy has internal linkage within that translation unit.)

This leads us to the real reason why inline function definitions are per-
mitted in header files: it is because inline functions have internal linkage by de-
fault, just as if they had been declared static. If multiple .cpp files #include
a header containing an inline function definition, each translation unit gets a
private copy of that function’s body, and no “multiply defined symbol” errors
are generated. The linker sees each copy as a distinct entity.

3.2.3 C/C++ Memory Layout

A program written in C or C++ stores its data in a number of different places
in memory. In order to understand how storage is allocated and how the
various types of C/C++ variables work, we need to understand the memory
layout of a C/C++ program.

130

3. Fundamentals of Software Engineering for Games

3.2.3.1 Executable Image

When a C/C++ program is built, the linker creates an executable file. Most
UNIX-like operating systems, including many game consoles, employ a pop-
ular executable file format called the executable and linking format (ELF). Exe-
cutable files on those systems therefore have a .elf extension. The Windows
executable format is similar to the ELF format; executables under Windows
have a .exe extension. Whatever its format, the executable file always con-
tains a partial image of the program as it will exist in memory when it runs.
I say a “partial” image because the program generally allocates memory at
runtime in addition to the memory laid out in its executable image.

The executable image is divided into contiguous blocks called segments
or sections. Every operating system lays things out a little differently, and
the layout may also differ slightly from executable to executable on the same
operating system. But the image is usually comprised of at least the following
four segments:

1. Text segment. Sometimes called the code segment, this block contains exe-
cutable machine code for all functions defined by the program.

2. Data segment. This segment contains all initialized global and static vari-
ables. The memory needed for each global variable is laid out exactly
as it will appear when the program is run, and the proper initial values
are all filled in. So when the executable file is loaded into memory, the
initialized global and static variables are ready to go.

3. BSS segment. “BSS” is an outdated name which stands for “block started
by symbol.” This segment contains all of the uninitialized global and
static variables defined by the program. The C and C++ languages ex-
plicitly define the initial value of any uninitialized global or static vari-
able to be zero. But rather than storing a potentially very large block of
zeros in the BSS section, the linker simply stores a count of how many
zero bytes are required to account for all of the uninitialized globals and
statics in the segment. When the executable is loaded into memory, the
operating system reserves the requested number of bytes for the BSS
section and fills it with zeros prior to calling the program’s entry point
(e.g.,main () or WinMain ()).

4. Read-only data segment. Sometimes called the rodata segment, this seg-
ment contains any read-only (constant) global data defined by the pro-
gram. For example, all floating-point constants (e.g., const float
kPi = 3.141592f;)and all global object instances that have been de-
clared with the const keyword (e.g., const Foo gReadOnlyFoo;)

3.2. Data, Code and Memory

131

reside in this segment. Note that integer constants (e.g., const int
kMaxMonsters = 255;) are often used as manifest constants by the
compiler, meaning that they are inserted directly into the machine code
wherever they are used. Such constants occupy storage in the text seg-
ment, but they are not present in the read-only data segment.

Global variables (variables defined at file scope outside any function or
class declaration) are stored in either the data or BSS segments, depending
on whether or not they have been initialized. The following global will be
stored in the data segment, because it has been initialized:

foo.cpp
F32 gInitializedGlobal = -2.0f;

and the following global will be allocated and initialized to zero by the oper-
ating system, based on the specifications given in the BSS segment, because it
has not been initialized by the programmer:

foo.cpp

F32 gUninitializedGlobal;

We’ve seen that the stat ic keyword can be used to give a global variable
or function definition internal linkage, meaning that it will be “hidden” from
other translation units. The static keyword can also be used to declare a
global variable within a function. A function-static variable is lexically scoped to
the function in which it is declared (i.e., the variable’s name can only be “seen”
inside the function). It is initialized the first time the function is called (rather
than before main () is called, as with file-scope statics). But in terms of mem-
ory layout in the executable image, a function-static variable acts identically
to a file-static global variable—it is stored in either the data or BSS segment
based on whether or not it has been initialized.

volid readHitchhikersGuide (U32 book)

{
static U32 sBooksInTheTrilogy = 5; // data segment
static U32 sBooksRead; // BSS segment
//

}

3.23.2 Program Stack

When an executable program is loaded into memory and run, the operating
system reserves an area of memory for the program stack. Whenever a function

132

3. Fundamentals of Software Engineering for Games

is called, a contiguous area of stack memory is pushed onto the stack—we call
this block of memory a stack frame. If function a () calls another functionb (),
anew stack frame for b () is pushed on top of a () ’s frame. When b () returns,
its stack frame is popped, and execution continues wherever a () left off.

A stack frame stores three kinds of data:

1. It stores the return address of the calling function so that execution may
continue in the calling function when the called function returns.

2. The contents of all relevant CPU registers are saved in the stack frame.
This allows the new function to use the registers in any way it sees fit,
without fear of overwriting data needed by the calling function. Upon
return to the calling function, the state of the registers is restored so that
execution of the calling function may resume. The return value of the
called function, if any, is usually left in a specific register so that the
calling function can retrieve it, but the other registers are restored to
their original values.

3. The stack frame also contains all local variables declared by the function;
these are also known as automatic variables. This allows each distinct
function invocation to maintain its own private copy of every local vari-
able, even when a function calls itself recursively. (In practice, some
local variables are actually allocated to CPU registers rather than being
stored in the stack frame, but for the most part such variables operate as
if they were allocated within the function’s stack frame.)

Pushing and popping stack frames is usually implemented by adjusting
the value of a single register in the CPU, known as the stack pointer. Fig-
ure 3.10 illustrates what happens when the functions shown below are exe-
cuted.

void c()

{
U32 localCl;
//

}

F32 b()

{
F32 localBl;
I32 localB2;

/7

3.2. Data, Code and Memory

133

c();
//

return localBl;

}

void a()

{ U32 aLocalsAl[5];
//
F32 localA2 = b();
//

}

When a function containing automatic variables returns, its stack frame is
abandoned and all automatic variables in the function should be treated as if
they no longer exist. Technically, the memory occupied by those variables is

function a() is called

function b() is called function c() is called

return address return address return address
saved CPU registers saved CPU registers saved CPU registers
a()'s a()'s a()'s
stack stack stack
frame frame frame
alocalsA1[5] alocalsA1[5] alocalsA1[5]
localA2 localA2 localA2
return address return address
saved CPU registers saved CPU registers
b()'s b()'s
stack stack
localB1 frame localB1 frame
localB2 localB2
return address
c()’s
saved CPU registers stack
frame
localC1

Figure 3.10. Stack frames.

134

3. Fundamentals of Software Engineering for Games

still there in the abandoned stack frame—but that memory will very likely be
overwritten as soon as another function is called. A common error involves
returning the address of a local variable, like this:

U32* getMeaningOfLife ()

{
U32 anInteger = 42;
return &anInteger;

You might get away with this if you use the returned pointer immediately
and don’t call any other functions in the interim. But more often than not, this
kind of code will crash—sometimes in ways that can be difficult to debug.

3.2.3.3 Dynamic Allocation Heap

Thus far, we’ve seen that a program’s data can be stored as global or static
variables or as local variables. The globals and statics are allocated within the
executable image, as defined by the data and BSS segments of the executable
file. The locals are allocated on the program stack. Both of these kinds of
storage are statically defined, meaning that the size and layout of the memory
is known when the program is compiled and linked. However, a program’s
memory requirements are often not fully known at compile time. A program
usually needs to allocate additional memory dynamically.

To allow for dynamic allocation, the operating system maintains a block
of memory for each running process from which memory can be allocated
by calling malloc () (or an OS-specific function like HeapAlloc () under
Windows) and later returned for reuse by the process at some future time by
calling free () (or an OS-specific function like HeapFree ()). This memory
block is known as heap memory, or the free store. When we allocate memory
dynamically, we sometimes say that this memory resides on the heap.

In C++, the global new and delete operators are used to allocate and free
memory to and from the free store. Be wary, however—individual classes
may overload these operators to allocate memory in custom ways, and even
the global new and de lete operators can be overloaded, so you cannot simply
assume that new is always allocating from the global heap.

We will discuss dynamic memory allocation in more depth in Chapter
6. For additional information, see http://en.wikipedia.org/wiki/Dynamic_
memory_allocation.

32.

Data, Code and Memory

135

3.2.4 Member Variables

C structsand C++ classes allow variables to be grouped into logical units.
It's important to remember that a class or struct declaration allocates no
memory. It is merely a description of the layout of the data—a cookie cutter
which can be used to stamp out instances of that struct or class later on.
For example:

struct Foo // struct declaration
{

U32 mUnsignedValue;

F32 mFloatValue;

bool mBooleanValue;

bi

Once a struct or class has been declared, it can be allocated (defined) in

any of the ways that an atomic data type can be allocated; for example,

as an automatic variable, on the program stack;

void someFunction ()
{
Foo localFoo;
//
}

as a global, file-static or function-static;

Foo gFoo;
static Foo sFoo;

void someFunction ()
{
static Foo sLocalFoo;

//

dynamically allocated from the heap. In this case, the pointer or refer-
ence variable used to hold the address of the data can itself be allocated
as an automatic, global, static or even dynamically.

Foo* gpFoo = NULL; // global pointer to a Foo

void someFunction ()

{
// allocate a Foo instance from the heap
gpFoo = new Foo;

136

3. Fundamentals of Software Engineering for Games

//

// allocate another Foo, assign to local pointer
Foox pAnotherFoo = new Foo;

//

// allocate a POINTER to a Foo from the heap
Foox* ppFoo = new Foox;
(*ppFoo) = pAnotherFoo;

}

3.2.4.1 Class-Static Members

As we’ve seen, the stat ic keyword has many different meanings depending
on context:

e When used at file scope, static means “restrict the visibility of this
variable or function so it can only be seen inside this .cpp file.”

* When used at function scope, static means “this variable is a global,
not an automatic, but it can only be seen inside this function.”

e When used inside a st ruct or class declaration, static means “this
variable is not a regular member variable, but instead acts just like a
global.”

Notice that when static is used inside a class declaration, it does not
control the visibility of the variable (as it does when used at file scope)—rather,
it differentiates between regular per-instance member variables and per-class
variables that act like globals. The wisibility of a class-static variable is deter-
mined by the use of public:, protected: or private: keywords in the
class declaration. Class-static variables are automatically included within the
namespace of the class or struct in which they are declared. So the name
of the class or st ruct must be used to disambiguate the variable whenever
it is used outside that class or struct (e.g., Foo: : sVarName).

Like an extern declaration for a regular global variable, the declaration
of a class-static variable within a class allocates no memory. The memory for
the class-static variable must be defined in a .cpp file. For example:

foo.h

class Foo

{
public:

3.2. Data, Code and Memory

137

static F32 sClassStatic; // allocates no
// memory!

}i

foo.cpp

F32 Foo::sClassStatic = -1.0f; // define memory and
// initialize

3.2.5 Object Layout in Memory

It’s useful to be able to visualize the memory layout of your classes and structs.
This is usually pretty straightforward—we can simply draw a box for the
struct or class, with horizontal lines separating data members. An example
of such a diagram for the st ruct Foo listed below is shown in Figure 3.11.

struct Foo

{
U32 mUnsignedValue;
F32 mFloatValue;
I32 mSignedValue;

}i

The sizes of the data members are important and should be represented in
your diagrams. This is easily done by using the width of each data member to
indicate its size in bits—i.e., a 32-bit integer should be roughly four times the
width of an eight-bit integer (see Figure 3.12).

struct Bar

{
u32 mUnsignedValue;
F32 mEFloatValue;
bool mBooleanValue; // diagram assumes this is 8 bits

bi
3.2.5.1 Alignment and Packing

As we start to think more carefully about the layout of our structs and classes
in memory, we may start to wonder what happens when small data members
are interspersed with larger members. For example:

struct InefficientPacking
{
U32 mUl; // 32 bits
F32 mF2; // 32 bits
Us mB3; // 8 bits

+0x0

mUnsignedValue

+0x4

mFloatValue

+0x8

mSignedValue

Figure 3.11. Mem-
ory layout of a simple

struct.

+0x0
+0x4
+0x8

mUnsignedValue

mFloatValue

mBogleanValue

Figure 3.12. A mem-

ory

layout using

width to indicate
member sizes.

138

3. Fundamentals of Software Engineering for Games

+0x0
+0x4
+0x8
+0xC
+0x10
+0x14

mF2

mBS‘

ml4

mBS‘

mP6

Figure 3.13.

cient struct packing
due to mixed data

member sizes.

132 mI4; // 32 bits

bool mB5; // 8 bits

char* mP6; // 32 bits
}i

You might imagine that the compiler simply packs the data members into
memory as tightly as it can. However, this is not usually the case. Instead, the
compiler will typically leave “holes” in the layout, as depicted in Figure 3.13.
(Some compilers can be requested not to leave these holes by using a prepro-
cessor directive like #pragma pack, or via command-line options; but the
default behavior is to space out the members as shown in Figure 3.13.)

Why does the compiler leave these “holes”? The reason lies in the fact that
every data type has a natural alignment, which must be respected in order to
permit the CPU to read and write memory effectively. The alignment of a data
object refers to whether its address in memory is a multiple of its size (which is
generally a power of two):

¢ An object with 1-byte alignment resides at any memory address.

¢ An object with 2-byte alignment resides only at even addresses (i.e., ad-
dresses whose least significant nibble is 0x0, 0x2, 0x4, 0x8, 0xA, 0xC or
0xE).

¢ An object with 4-byte alignment resides only at addresses that are a mul-
tiple of four (i.e., addresses whose least significant nibble is 0x0, 0x4, 0x8
or 0xC).

* A 16-byte aligned object resides only at addresses that are a multiple of
16 (i.e., addresses whose least significant nibble is 0x0).

Alignment is important because many modern processors can actually
only read and write properly aligned blocks of data. For example, if a pro-
gram requests that a 32-bit (4-byte) integer be read from address 0x6A341174,
the memory controller will load the data happily because the address is 4-byte
aligned (in this case, its least significant nibble is 0x4). However, if a request
is made to load a 32-bit integer from address 0x6A341173, the memory con-
troller now has to read two 4-byte blocks: the one at 0x6A341170 and the one
at 0x6A341174. It must then mask and shift the two parts of the 32-bit integer
and logically OR them together into the destination register on the CPU. This
is shown in Figure 3.14.

Some microprocessors don’t even go this far. If you request a read or write
of unaligned data, you might just get garbage. Or your program might just
crash altogether! (The PlayStation 2 is a notable example of this kind of intol-
erance for unaligned data.)

3.2. Data, Code and Memory 139

Aligned read from Unaligned read from
0x6A341174 0x6A341173

0x6A341170 0x6A341170

0x6A341174 alignedValue 0x6A341174(-alignedValue

0x6A341178 0x6A341178 >

un-
CPU / -alignedValue H

register ‘ l
‘ un- -alignedValue
CPU
P>
register

Figure 3.14. Aligned and unaligned reads of a 32-bit integer.

Different data types have different alignment requirements. A good rule
of thumb is that a data type should be aligned to a boundary equal to the
width of the data type in bytes. For example, 32-bit values generally have a 4-
byte alignment requirement, 16-bit values should be 2-byte aligned, and 8-bit
values can be stored at any address (1-byte aligned). On CPUs that support
SIMD vector math, the SIMD registers each contain four 32-bit floats, for a
total of 128 bits or 16 bytes. And as you would guess, a four-float SIMD vector
typically has a 16-byte alignment requirement.

This brings us back to those “holes” in the layout of st ruct Inefficient 4010 mut
Packing shown in Figure 3.13. When smaller data types like 8-bit bools are +ox4 mF2
interspersed with larger types like 32-bit integers or f1oats in a structure or 108 it
class, the compiler introduces padding (holes) in order to ensure that every- o e

. . . , . . . +0x10 | mB3 ‘ mB5 ‘ (pad)
thing is properly aligned. It's a good idea to think about alignment and pack-
ing when declaring your data structures. By simply rearranging the members Figure 3.15. More
of struct InefficientPacking from the example above, we can elimi- ~ cfficient packing by
. . . grouping small mem-
nate some of the wasted padding space, as shown below and in Figure 3.15: bers together.

struct MoreEfficientPacking

{
U32 mUl; // 32 bits (4-byte aligned)
F32 mF2; // 32 bits (4-byte aligned)
I32 mI4; // 32 bits (4-byte aligned)

140

3. Fundamentals of Software Engineering for Games

+0x0

+sizeof(A)

Figure 3.16. Effect of
inheritance on class
layout.

char mP6; // 32 bits (4-byte aligned)

U8 mB3; // 8 bits (l-byte aligned)

bool mB5; // 8 bits (l-byte aligned)
}i

You'll notice in Figure 3.15 that the size of the structure as a whole is now
20 bytes, not 18 bytes as we might expect, because it has been padded by two
bytes at the end. This padding is added by the compiler to ensure proper
alignment of the structure in an array context. That is, if an array of these
structs is defined and the first element of the array is aligned, then the padding
at the end guarantees that all subsequent elements will also be aligned properly.

The alignment of a structure as a whole is equal to the largest alignment
requirement among its members. In the example above, the largest mem-
ber alignment is 4-byte, so the structure as a whole should be 4-byte aligned.
I usually like to add explicit padding to the end of my structs to make the
wasted space visible and explicit, like this:

struct BestPacking

{

U32 mUl; // 32 bits (4-byte aligned)
F32 mF2; // 32 bits (4-byte aligned)
132 mId4; // 32 bits (4-byte aligned)
char* mP6; // 32 bits (4-byte aligned)
Us mB3; // 8 bits (l-byte aligned)
bool mB5; // 8 bits (l-byte aligned)

Us _pad([2]; // explicit padding
}i

3.2.5.2 Memory Layout of C++ Classes

Two things make C++ classes a little different from C structures in terms of
memory layout: inheritance and virtual functions.

When class B inherits from class A, B’s data members simply appear im-
mediately after A’s in memory, as shown in Figure 3.16. Each new derived
class simply tacks its data members on at the end, although alignment require-
ments may introduce padding between the classes. (Multiple inheritance does
some whacky things, like including multiple copies of a single base class in the
memory layout of a derived class. We won't cover the details here, because
game programmers usually prefer to avoid multiple inheritance altogether
anyway.)

If a class contains or inherits one or more virtual functions, then four ad-
ditional bytes (or eight bytes if the target hardware uses 64-bit addresses) are
added to the class layout, typically at the very beginning of the class’ lay-
out. These four or eight bytes are collectively called the virtual table pointer or

3.2. Data, Code and Memory

141

vpointer, because they contain a pointer to a data structure known as the vir-
tual function table or vtable. The vtable for a particular class contains pointers
to all the virtual functions that it declares or inherits. Each concrete class has
its own virtual table, and every instance of that class has a pointer to it, stored
in its vpointer.

The virtual function table is at the heart of polymorphism, because it al-
lows code to be written that is ignorant of the specific concrete classes it is deal-
ing with. Returning to the ubiquitous example of a Shape base class with de-
rived classes for Circle, Rectangle and Triangle, let’s imagine that Shape

defines a virtual function called Draw (). The derived classes all override
this function, providing distinct implementations named Circle: :Draw (),
Rectangle::Draw() and Triangle::Draw (). The virtual table for any

class derived from Shape will contain an entry for the Draw () function, but
that entry will point to different function implementations, depending on the
concrete class. Circle’s vtable will contain a pointer to Circle: :Draw (),
while Rectangle’s virtual table will point to Rectangle: :Draw (), and
Triangle’s vtable will point to Triangle: :Draw (). Given an arbitrary
pointer to a Shape (Shape* pShape), the code can simply dereference the
vtable pointer, look up the Draw () function’s entry in the vtable, and call
it. The result will be to call Circle: :Draw () when pShape points to an
instance of Circle, Rectangle: :Draw () when pShape points to a Rec-
tangle,and Triangle: :Draw () when pShape points to a Triangle.

These ideas are illustrated by the following code excerpt. Notice that the
base class Shape defines two virtual functions, SetId () and Draw (), the
latter of which is declared to be pure virtual. (This means that Shape pro-
vides no default implementation of the Draw () function, and derived classes
must override it if they want to be instantiable.) Class Circle derives from
Shape, adds some data members and functions to manage its center and ra-
dius, and overrides the Draw () function; this is depicted in Figure 3.17. Class
Triangle also derives from Shape. It adds an array of Vector3 objects to
store its three vertices and adds some functions to get and set the individual
vertices. Class Triangle overrides Draw () as we’d expect, and for illustra-
tive purposes it also overrides SetId (). The memory image generated by
the Triangle class is shown in Figure 3.18.

class Shape

{

public:
virtual void SetId(int id) { m_id = id; }
int GetId () const { return m_id; }

142

3. Fundamentals of Software Engineering for Games

Shape: :SetId(int id)
{

m_id = id;

/

Circle: :Draw()

pShape1
stance of Circle Circle’s Virtual Table }
+0x00 vtable pointer > pointer to Setld()
+0x04 Shape::m_id pointer to Draw()
+0x08 Circle::m_center
+0x14 Circle::m_radius

{
// code to draw a Circle

}

Figure 3.17. pShapel points to an instance of class Circle

virtual void Draw() =

private:
int

}i

class Circle
{
public:
void
Vector3

void
float

0; // pure virtual -- no impl.

m_id;

public Shape

SetCenter (const Vector3& c)
GetCenter ()

{ m_center=c; }
const { return m_center; }

SetRadius (float r)
GetRadius ()

{ m_radius = r; }
const { return m_radius; }

virtual void Draw ()

{

// code to draw a circle

private:
Vector3
float
}i

class Triangle

{
public:
void

SetVertex (int i,
Vector3 GetVertex (int 1)

m_center;
m_radius;

public Shape

const Vector3& v);
const { return m_vtx[i]; }

3.2. Data, Code and Memory

143

pShape2 Triangle::SetId(int id)
{
Shape: :SetId(id) ;
stance of Triangle Triangle’s Virtual Table
// do additional work
// specific to Triangles
+0x00 vtable pointer > pointer to Setld() !
+0x04 Shape::m_id pointer to Draw()
+0x08 Triangle::m_vtx[0]
Triangle: :Draw ()
+0x14 Triangle::m_vix[1] {
// code to draw a Triangle
+0x20 Triangle::m_vtx[2] }

Figure 3.18. pshape?2 points to an instance of class Triangle.

virtual void Draw ()

{

// code to draw a triangle

virtual void SetId(int id)

{

// call base class'

Shape::SetId(id);

implementation

// do additional work specific to Triangles...

private:

}i

Vector3

m_vtx[3];

void main (int, charx*x)

{

Shapex pShapel = new Circle;
Shapex pShape2 = new Triangle;

pShapel->Draw () ;
pShape2->Draw () ;

//

144

3. Fundamentals of Software Engineering for Games

Metric (SI) IEC

Value | Unit | Name Value | Unit | Name

1000 kB | kilobyte 1024 KiB | kibibyte

1000° | MB | megabyte | 1024 | MiB | mebibyte
1000° | GB | gigabyte | 1024° | GiB | gibibyte
1000* | TB | terabyte | 1024* | TiB | tebibyte
1000° | PB | petabyte | 1024° | PiB | pebibyte
1000° | EB | exabyte | 1024° | EiB | exbibyte
10007 | ZB | zettabyte | 10247 | ZiB | zebibyte
1000® | YB | yottabyte | 1024® | YiB | yobibyte

Table 3.1. Comparison of Metric (SI) units and IEC units for describing quantities of bytes.

3.2.6 Kilobytes and Kibibytes

If you are a computer programmer, you've probably used Metric (SI) units like
kilobytes (kB) and megabytes (MB) to decribe quantities of memory. What a
lot of people don't realize is that the use of these units isn’t strictly correct.
When we speak of a “kilobyte,” we usually mean 1024 bytes. But SI units
define the prefix “kilo” to mean 10 or 1000, not 1024.

To resolve this ambiguity, the International Electrotechnical Commission
(IEC) in 1998 established a new set of SI-like prefixes for use in computer sci-
ence. These prefixes are defined in terms of powers of two rather than pow-
ers of ten, so that computer engineers can precisely and conveniently specify
quantities that are powers of two. In this new system, instead of kilobyte
(1000 bytes), we say kibibyte (1024 bytes, abbreviated KiB). And instead of
megabyte (1,000,000 bytes), we say mebibyte (1024 x 1024 = 1,048,576 bytes,
abbreviated MiB). Table 3.1 summarizes the sizes, prefixes and names of the
most commonly used byte quantity units in both the SI and IEC systems. We'll
use IEC units throughout this book.

3.3 Catching and Handling Errors
There are a number of ways to catch and handle error conditions in a game

engine. As a game programmer, it’s important to understand these different
mechanisms, their pros and cons and when to use each one.

3.3. Catching and Handling Errors

145

3.3.1 Types of Errors

In any software project there are two basic kinds of error conditions: user errors
and programmer errors. A user error occurs when the user of the program does
something incorrect, such as typing an invalid input, attempting to open a
file that does not exist, etc. A programmer error is the result of a bug in the
code itself. Although it may be triggered by something the user has done, the
essence of a programmer error is that the problem could have been avoided
if the programmer had not made a mistake, and the user has a reasonable
expectation that the program should have handled the situation gracefully.

Of course, the definition of “user” changes depending on context. In the
context of a game project, user errors can be roughly divided into two cate-
gories: errors caused by the person playing the game and errors caused by
the people who are making the game during development. It is important to
keep track of which type of user is affected by a particular error and handle
the error appropriately.

There’s actually a third kind of user—the other programmers on your
team. (And if you are writing a piece of game middleware software, like Ha-
vok or OpenGL, this third category extends to other programmers all over the
world who are using your library.) This is where the line between user errors
and programmer errors gets blurry. Let’s imagine that programmer A writes a
function £ (), and programmer B tries to call it. If B calls £ () with invalid ar-
guments (e.g., a NULL pointer, or an out-of-range array index), then this could
be seen as a user error by programmer A, but it would be a programmer er-
ror from B’s point of view. (Of course, one can also argue that programmer
A should have anticipated the passing of invalid arguments and should have
handled them gracefully, so the problem really is a programmer error, on A’s
part.) The key thing to remember here is that the line between user and pro-
grammer can shift depending on context—it is rarely a black-and-white dis-
tinction.

3.3.2 Handling Errors

When handling errors, the requirements differ significantly between the two
types. It is best to handle user errors as gracefully as possible, displaying
some helpful information to the user and then allowing him or her to con-
tinue working—or in the case of a game, to continue playing. Programmer
errors, on the other hand, should rnot be handled with a graceful “inform and
continue” policy. Instead, it is usually best to halt the program and provide
detailed low-level debugging information, so that a programmer can quickly
identify and fix the problem. In an ideal world, all programmer errors would
be caught and fixed before the software ships to the public.

146

3. Fundamentals of Software Engineering for Games

3.3.21 Handling Player Errors

When the “user” is the person playing your game, errors should obviously be
handled within the context of gameplay. For example, if the player attempts
to reload a weapon when no ammo is available, an audio cue and/or an ani-
mation can indicate this problem to the player without taking him or her “out
of the game.”

3.3.2.2 Handling Developer Errors

When the “user” is someone who is making the game, such as an artist, an-
imator or game designer, errors may be caused by an invalid asset of some
sort. For example, an animation might be associated with the wrong skeleton,
or a texture might be the wrong size, or an audio file might have been sam-
pled at an unsupported sample rate. For these kinds of developer errors, there
are two competing camps of thought.

On the one hand, it seems important to prevent bad game assets from per-
sisting for too long. A game typically contains literally thousands of assets,
and a problem asset might get “lost,” in which case one risks the possibility of
the bad asset surviving all the way into the final shipping game. If one takes
this point of view to an extreme, then the best way to handle bad game assets
is to prevent the entire game from running whenever even a single problem-
atic asset is encountered. This is certainly a strong incentive for the developer
who created the invalid asset to remove or fix it immediately.

On the other hand, game development is a messy and iterative process,
and generating “perfect” assets the first time around is rare indeed. By this
line of thought, a game engine should be robust to almost any kind of prob-
lem imaginable, so that work can continue even in the face of totally invalid
game asset data. But this too is not ideal, because the game engine would
become bloated with error-catching and error-handling code that won't be
needed once the development pace settles down and the game ships. And the
probability of shipping the product with “bad” assets becomes too high.

In my experience, the best approach is to find a middle ground between
these two extremes. When a developer error occurs, I like to make the error
obvious and then allow the team to continue to work in the presence of the
problem. It is extremely costly to prevent all the other developers on the team
from working, just because one developer tried to add an invalid asset to the
game. A game studio pays its employees well, and when multiple team mem-
bers experience downtime, the costs are multiplied by the number of people
who are prevented from working. Of course, we should only handle errors in
this way when it is practical to do so, without spending inordinate amounts
of engineering time, or bloating the code.

3.3. Catching and Handling Errors

147

As an example, let’s suppose that a particular mesh cannot be loaded. In
my view, it’s best to draw a big red box in the game world at the places that
mesh would have been located, perhaps with a text string hovering over each
one that reads, “Mesh blah-dee-blah failed to load.” This is superior to printing
an easy-to-miss message to an error log. And it’s far better than just crash-
ing the game, because then no one will be able to work until that one mesh
reference has been repaired. Of course, for particularly egregious problems
it’s fine to just spew an error message and crash. There’s no silver bullet for
all kinds of problems, and your judgment about what type of error handling
approach to apply to a given situation will improve with experience.

3.3.2.3 Handling Programmer Errors

The best way to detect and handle programmer errors (a.k.a. bugs) is often
to embed error-checking code into your source code and arrange for failed
error checks to halt the program. Such a mechanism is known as an assertion
system; we’ll investigate assertions in detail in Section 3.3.3.3. Of course, as
we said above, one programmer’s user error is another programmer’s bug;
hence, assertions are not always the right way to handle every programmer
error. Making a judicious choice between an assertion and a more graceful
error-handling technique is a skill that one develops over time.

3.3.3 Implementation of Error Detection and Handling

We’ve looked at some philosophical approaches to handling errors. Now let’s
turn our attention to the choices we have as programmers when it comes to
implementing error detection and handling code.

3.3.3.1 Error Return Codes

A common approach to handling errors is to return some kind of failure code
from the function in which the problem is first detected. This could be a
Boolean value indicating success or failure, or it could be an “impossible”
value, one that is outside the range of normally returned results. For exam-
ple, a function that returns a positive integer or floating-point value could
return a negative value to indicate that an error occurred. Even better than
a Boolean or an “impossible” return value, the function could be designed to
return an enumerated value to indicate success or failure. This clearly sepa-
rates the error code from the output(s) of the function, and the exact nature
of the problem can be indicated on failure (e.g., enum Error { kSuccess,
kAssetNotFound, kInvalidRange, ... }).

148

3. Fundamentals of Software Engineering for Games

The calling function should intercept error return codes and act appropri-
ately. It might handle the error immediately. Or, it might work around the
problem, complete its own execution and then pass the error code on to what-
ever function called it.

3.3.3.2 Exceptions

Error return codes are a simple and reliable way to communicate and respond
to error conditions. However, error return codes have their drawbacks. Per-
haps the biggest problem with error return codes is that the function that de-
tects an error may be totally unrelated to the function that is capable of han-
dling the problem. In the worst-case scenario, a function that is 40 calls deep
in the call stack might detect a problem that can only be handled by the top-
level game loop, or by main (). In this scenario, every one of the 40 functions
on the call stack would need to be written so that it can pass an appropriate
error code all the way back up to the top-level error-handling function.

One way to solve this problem is to throw an exception. Exception han-
dling is a very powerful feature of C++. It allows the function that detects a
problem to communicate the error to the rest of the code without knowing
anything about which function might handle the error. When an exception is
thrown, relevant information about the error is placed into a data object of the
programmer’s choice known as an exception object. The call stack is then au-
tomatically unwound, in search of a calling function that has wrapped its call
in a try-catch block. If a try-catch block is found, the exception object is
matched against all possible catch clauses, and if a match is found, the cor-
responding catch’s code block is executed. The destructors of any automatic
variables are called as needed during the stack unwinding process.

The ability to separate error detection from error handling in such a clean
way is certainly attractive, and exception handling is an excellent choice for
some software projects. However, exception handling does add some over-
head to the program. The stack frame of any function that contains a try-
catch block must be augmented to contain additional information required
by the stack unwinding process. Also, if even one function in your program
(or a library that your program links with) uses exception handling, your en-
tire program must use exception handling—the compiler can’t know which
functions might be above you on the call stack when you throw an exception.

Arguably more important than the overhead issue is the fact that excep-
tions are really no better than goto statements. Joel Spolsky of Microsoft
and Fog Creek Software fame argues that exceptions are in fact worse than
gotos because they aren’t easily seen in the source code. A function that nei-
ther throws nor catches exceptions may nevertheless become involved in the

3.3. Catching and Handling Errors

149

stack-unwinding process, if it finds itself sandwiched between such functions
in the call stack. This can make writing robust software difficult. When the
possibility for exception throwing exists, pretty much every function in your
codebase needs to be robust to the carpet being pulled out from under it and
all its local objects destroyed whenever it makes a function call.

Clearly there are some pretty strong arguments for turning off exception
handling in your game engine altogether. This is the approach employed at
Naughty Dog and also on most of the projects I've worked on at Electronic
Arts and Midway. That said, your mileage may vary! There is no perfect tool
and no one right way to do anything. When used judiciously, exceptions can
make your code easier to write and work with. Just be careful out there.

There are many interesting articles on this topic on the web. Here’s one
good thread that covers most of the key issues on both sides of the debate:

e http://www.joelonsoftware.com/items/2003/10/13.html
¢ http://www.nedbatchelder.com/text/exceptions-vs-status.html
* http://www.joelonsoftware.com/items/2003/10/15.html

3.3.3.3 Assertions

An assertion is a line of code that checks an expression. If the expression evalu-
ates to true, nothing happens. But if the expression evaluates to false, the pro-
gram is stopped, a message is printed and the debugger is invoked if possible.
Steve Maguire provides an in-depth discussion of assertions in his must-read
book, Writing Solid Code [30].

Assertions check a programmer’s assumptions. They act like land mines
for bugs. They check the code when it is first written to ensure that it is func-
tioning properly. They also ensure that the original assumptions continue
to hold for long periods of time, even when the code around them is con-
stantly changing and evolving. For example, if a programmer changes code
that used to work, but accidentally violates its original assumptions, they’ll
hit the land mine. This immediately informs the programmer of the problem
and permits him or her to rectify the situation with minimum fuss. Without
assertions, bugs have a tendency to “hide out” and manifest themselves later
in ways that are difficult and time-consuming to track down. But with asser-
tions embedded in the code, bugs announce themselves the moment they are
introduced—which is usually the best moment to fix the problem, while the
code changes that caused the problem are fresh in the programmer’s mind.

Assertions are implemented as a #define macro, which means that the
assertion checks can be stripped out of the code if desired by simply changing
the #define. The cost of the assertion checks can usually be tolerated during

150

3. Fundamentals of Software Engineering for Games

development, but stripping out the assertions prior to shipping the game can
buy back that little bit of crucial performance if necessary.

Assertion /mp/ernentation

Assertions are usually implemented via a combination of a #defined macro
that evaluates to an 1 £/else clause, a function that is called when the asser-
tion fails (the expression evaluates to false), and a bit of assembly code that
halts the program and breaks into the debugger when one is attached. Here’s
a typical implementation:

#if ASSERTIONS_ENABLED

// define some inline assembly that causes a break

// into the debugger -- this will be different on each
// target CPU

#define debugBreak () asm { int 3 }

// check the expression and fail if it is false
#define ASSERT (expr) \

if (expr) { } \
else \
{\
reportAssertionFailure (#expr, \
__FILE_ , __LINE_); \
debugBreak (); \
}
#else

#define ASSERT (expr) // evaluates to nothing

#endif

Let’s break down this definition so we can see how it works:

The outer #if/#else/#endif is used to strip assertions from the code
base. When ASSERTIONS_ENABLED is nonzero, the ASSERT () macro
is defined in its full glory, and all assertion checks in the code will be in-
cluded in the program. But when assertions are turned off, ASSERT (expr)
evaluates to nothing, and all instances of it in the code are effectively re-
moved.

The debugBreak () macro evaluates to whatever assembly-language
instructions are required in order to cause the program to halt and the

3.3. Catching and Handling Errors 151

debugger to take charge (if one is connected). This differs from CPU to
CPU, but it is usually a single assembly instruction.

* The ASSERT () macro itself is defined using a full 1f/else statement
(as opposed to a lone if). This is done so that the macro can be used in
any context, even within other unbracketed if/else statements.

Here’s an example of what would happen if ASSERT () were defined using
a solitary if:

#define ASSERT (expr) if (! (expr)) debugBreak ()

void f ()
{
if (a < 5)
ASSERT (a >= 0);
else
doSomething(a);
}

This expands to the following incorrect code:

void f ()
{
if (a < 5)
if (!(a >= 0))
debugBreak () ;
else // oops! bound to the wrong 1if()!
doSomething(a);

e The else clause of an ASSERT () macro does two things. It displays
some kind of message to the programmer indicating what went wrong,
and then it breaks into the debugger. Notice the use of #expr as the first
argument to the message display function. The pound (#) preprocessor
operator causes the expression expr to be turned into a string, thereby
allowing it to be printed out as part of the assertion failure message.

* Noticealsotheuseof _ FILE__and __ LINE__. These compiler-defin-
ed macros magically contain the .cpp file name and line number of the
line of code on which they appear. By passing them into our message
display function, we can print the exact location of the problem.

I highly recommend the use of assertions in your code. However, it’s im-
portant to be aware of their performance cost. You may want to consider

152

3. Fundamentals of Software Engineering for Games

defining two kinds of assertion macros. The regular ASSERT () macro can be
left active in all builds, so that errors are easily caught even when not running
in debug mode. A second assertion macro, perhaps called SLOW_ASSERT (),
could be activated only in debug builds. This macro could then be used in
places where the cost of assertion checking is too high to permit inclusion
in release builds. Obviously SLOW_ASSERT () is of lower utility, because it is
stripped out of the version of the game that your testers play every day. But at
least these assertions become active when programmers are debugging their
code.

It’s also extremely important to use assertions properly. They should be
used to catch bugs in the program itself—never to catch user errors. Also, as-
sertions should always cause the entire game to halt when they fail. It's usu-
ally a bad idea to allow assertions to be skipped by testers, artists, designers
and other non-engineers. (This is a bit like the boy who cried wolf: if asser-
tions can be skipped, then they cease to have any significance, rendering them
ineffective.) In other words, assertions should only be used to catch fatal er-
rors. If it’s OK to continue past an assertion, then it’s probably better to notify
the user of the error in some other way, such as with an on-screen message, or
some ugly bright-orange 3D graphics.

3.4 Pipelines, Caches and Optimization

We said in Section 1.2.1 that games are soft real-time systems. The term “real-
time” means that game software must operate with deadlines—the most ob-
vious of which is the requirement that each frame must be completed within
16.6 ms (to achieve 60 FPS) or 33.3 ms (to achieve 30 FPS). The “soft” part
means that people won't die if our frame rate dies. But nonetheless, there’s no
doubt about it: game software needs to perform as efficiently as possible.

The term optimization is a blanket term that covers anything the program-
mers, game designers and/or artists can do in order to improve the perfor-
mance—and ultimately the frame rate—of their game. It can also refer to other
kinds of improvements, like reducing the size of assets so that they will fit
into memory. In this section, we’ll focus our attention on one specific aspect
of performance optimization: that of making our software perform its com-
putations as quickly as possible. Once you've read it, check out Alexander
Alexandrescu’s talk, “Three Optimization Tips for C++” for more inform-
ation—it’s available here: http://www.slideshare.net/andreialexandrescul/
three-optimization-tips-for-c-15708507.

34. Pipelines, Caches and Optimization

153

3.4.1 The Parallelism Paradigm Shift

In order to optimize the performance of a piece of software, we need to under-
stand what kinds of things can slow it down. These things change over time,
as computer hardware evolves.

In the early days of computing, CPUs were relatively slow, so program-
mers would optimize their code by focusing on reducing the number of cy-
cles spent on any given task. CPUs did exactly one operation at a time, so
programmers could literally read the disassembly and count up the cycles
consumed by each instruction. And because memory accesses were relatively
cheap, programmers would often trade more memory for fewer cycles.

Today, the situation is almost entirely different. Computers and game con-
soles now contain multiple CPU cores running in parallel, and software has
to be written to take advantage of this parallelism. (See Section 7.6 for an in-
depth discussion of multicore computing in a games context.) This paradigm
shift towards parallel processing also extends down into the design of the
CPU core itself. Modern CPUs are pipelined, meaning that multiple instruc-
tions can be “in flight” simultaneously. And today’s GPUs are essentially
massively parallel compute engines, capable of performing hundreds or even
thousands of computations in parallel.

In part because of this shift towards parallelism, CPU performance has
been improving at a much faster rate than the speed with which memory can
be accessed. Today’s CPUs employ complex memory cacheing schemes to
reduce memory access latency. Nowadays, the mantra is: “Memory is ex-
pensive, compute cycles are cheap.” As a result of all this, the rules of per-
formance optimization have been flipped entirely upside-down from those of
the early days. Instead of reducing the number of instructions executed, it’s
now commonplace to do more work on the CPU in order to avoid having to
access memory!

3.4.2 Memory Caches

To understand why memory access patterns affect performance, we need first
to understand how modern processors read and write memory. Accessing
main system RAM on a modern game console or personal computer is a slow
operation, often taking thousands of processor cycles to complete. Contrast
this with a register access on the CPU itself, which takes on the order of tens of
cycles or sometimes even a single cycle. To reduce the average cost of reading
and writing to main RAM, modern processors utilize one or more high-speed
memory caches.

154 3. Fundamentals of Software Engineering for Games

A cache is nothing more than a bank of memory that can be read from and
written to by the CPU much more quickly than main RAM. A cache achieves
minimum memory access latency in two ways: First, cache memory typically
utilizes the fastest (and most expensive) technology available. Second, cache
memory is located as physically close as possible to the CPU core, typically on
the same die. As a result of these two factors, cache memory is usually quite
a bit smaller in size than main RAM.

A memory cacheing system improves memory access performance by keep-
ing local copies in the cache of those chunks of data that are most frequently
accessed by the program. If the data requested by the CPU is already in the
cache, it can be provided to the CPU very quickly—on the order of tens of
cycles. This is called a cache hit. However, if the data is not already present in
the cache, it must be fetched into the cache from main RAM. This is called a
cache miss. Reading data from main RAM can take thousands of cycles, so the
cost of a cache miss is very high indeed.

3.4.2.1 Cache Lines

In order to reduce the impact of a cache miss, the cache controller tries to
make the most of the situation by loading more memory into the cache than
was actually requested. For example, let’s say the program tries to read the
contents of an int variable, which typically occupies a single machine word—
that’s 32 or 64 bits in size, depending on the architecture. Instead of spending
thousands of cycles to read just that one word, the cache controller reads a
larger contiguous block of memory containing that word. The idea is that if
the program is accessing memory sequentially, which is often the case, the
first read might incur the cost of a cache miss, but subsequent reads will be
low-cost cache hits.

There is a simple one-to-many correspondance between memory addresses
in the cache and memory addresses in main RAM. We can think of the ad-
dress space of the cache as being “mapped” onto the main RAM address
space in a repeating pattern, starting at address 0 in main RAM and con-
tinuing on up until all main RAM addresses have been “covered” by the
cache. As a concrete example, let’s say that our cache is 32 KiB! in size,
and that cache lines are 128 bytes each. The cache can therefore hold 256
cache lines (256 x 128 = 32768 B = 32 KiB). Let’s further assume that main
RAM is 256 MiB in size. So main RAM is 8192 times as big as the cache
((256 x 1024)/32 = 8192). That means we need to overlay the address space

IRecall from Section 3.2.6 that KiB stands for “kibibyte.” 1 KiB = 1024 bytes.

34. Pipelines, Caches and Optimization

155

Main RAM Cache
OXFFFFFFF i
Lines 0 -255 Line 255 Ox07FFF
OxFFF8000 0x07FE0
OXFFF7FFF ;
Lines 0 -255 Line 254 OX07F7F
0xFFF0000 00700
OX1FFFF i
Lines 0 -255 Line 2 0x0017F
0x18000 000100
Ox17FFF i
Lines 0 -255 Line 1 0x000FF
0x10000 0100080
OXOFFFF)
Lines 0 -255 Line 0 0x0007F
0x08000 0200000
OXO7FFF ;
Lines 0 - 255
0x00000

Figure 3.19. Direct mapping between main memory addresses and cache lines.

of the cache onto the main RAM address space 8192 times in order to cover all
possible physical memory locations.

Given any address in main RAM, we can find its address in the cache by
taking the main RAM address modulo the size of the cache. So for a 32 KiB
cache and 256 MiB of main RAM, the cache addresses 0x0000 through 0x7FFF
(that’s 32 KiB) map to main RAM addresses 0x0000 through 0x7FFF, but they
also map to the addresses 0x8000 through OxFFFF, 0x10000 through 0x17FFF,
0x18000 through Ox1FFFF and so on, all the way up to the last block at ad-
dresses OxFFF8000 through OxFFFFFFE. Figure 3.19 illustrates the mapping
between main RAM and cache RAM.

The cache can only deal with memory addresses that are aligned to a multi-
ple of the cache line size (see Section 3.2.5.1 for a discussion of memory align-
ment). So, the cache can really only be addressed in units of lines, not bytes.
Consider a cache that is 2 bytes in total size, containing lines that are 2" in
size. We can convert any main RAM address to a cache line index as follows.
First we strip off the n least-significant bits of the main RAM address to con-
vert from units of bytes to line indices (i.e., we divide the address by 2™). Then
we split the resulting address into two pieces: The (M — n) least-significant
bits become the cache line index, and all the remaining bits tell us from which
cache-sized block in main RAM the cache line came from. The block index
is stored in a special data structure within the cache controller known as the
translation lookaside buffer, or TLB. Without the TLB, we would not be able to
keep track of the one-to-many relationship between cache line indices and
main RAM addresses.

156

3. Fundamentals of Software Engineering for Games

3.4.2.2 Instruction Cache and Data Cache

When writing high-performance code for a game engine or for any other
performance-critical system, it is important to realize that both data and code
are cached. The instruction cache (I-cache, sometimes denoted I$) is used to
preload executable machine code before it runs, while the data cache (D-cache,
or D$) is used to speed up reading and writing of data to main RAM. The
two caches are always physically distinct, because it is never desirable for an
instruction read to cause valid data to be bumped out of the cache, or vice
versa. So when optimizing our code, we must consider both D-cache and
I-cache performance (although as we’ll see, optimizing one tends to have a
positive effect on the other).

3.4.23 Set Associativity and Replacement Policy

The simple mapping between cache lines and main RAM addresses described
above is known as a direct-mapped cache. It means that each address in main
RAM maps to only one line in the cache. Using our 32 KiB cache with 128-
byte lines as an example, the main RAM address 0x203 maps to cache line 4
(because 0x203 is 515, and |515/128| = 4). However, in our example there
are 8192 unique cache-line-sized blocks of main RAM that all map to cache
line 4. Specifically, cache line 4 corresponds to main RAM addresses 0x200
through 0x27F, but also to addresses 0x8200 through 0x827F, and 0x10200
through 0x1027f and so on.

When a cache miss occurs, the CPU must load the corresponding cache
line from main memory into the cache. If the line in the cache contains no valid
data, we simply copy the data into it and we’re done. But if the line already
contains data (from a different main memory block), we must overwrite it.
This is known as evicting the data, or “kicking” the data out of the cache.

The problem with a direct-mapped cache is that it can result in pathologi-
cal cases; for example, two unrelated main memory blocks might keep evict-
ing one another in a ping-pong fashion. We can obtain better average perfor-
mance if each main memory address can map to two or more distinct lines
in the cache. In a 2-way set associative cache, each main RAM address maps
to two cache lines. This is illustrated in Figure 3.20. Obviously a 4-way set
associative cache performs even better than a 2-way, and an 8-way or 16-way
cache can outperform a 4-way cache and so on.

Once we have more than one “cache way,” the cache controller is faced
with a dilemma: When a cache miss occurs, which of the “ways” should we
evict and which one should we allow to stay resident in the cache? The an-
swer to this question differs between CPU designs, and is known as the CPU’s

34. Pipelines, Caches and Optimization

157

Cache
. (2-Way Set Associative)
Main RAM
0x000FF
Line 1, Way 1
0x0017F Line 2 y 0x00080
0x00100 5 0x000FF
o Line 1, Way 0
x000FF Line 1 0x00080
in
0x00080 @ 5 0x0007F
o Line 0, Way 1
x0007F Line 0 0x00000
ine
0x00000 . 0x0007F
Line 0, Way 0
0x00000

Figure 3.20. A 2-way set associative cache.

replacement policy. One popular policy is to simply always evict the “oldest”
data.

3.4.2.4 Write Policy

We haven't talked yet about what happens when the CPU writes data to RAM.
How the cache controller handles writes is known as its write policy. The sim-
plest kind of cache is called a write-through cache; in this relatively simple cache
design, all writes to the cache are mirrored to main RAM immediately. In a
write-back (or copy-back) cache design, data is first written into the cache and
the cache line is only flushed out to main RAM under certain circumstances,
such as when a dirty cache line needs to be evicted in order to read in a new
cache line from main RAM, or when the program explicitly requests a flush to
occur.

3.4.2.5 Multilevel Caches

The hit rate is a measure of how often a program hits the cache, as opposed to
incurring the large cost of a cache miss. The higher the hit rate, the better the
program will perform (all other things being equal). There is a fundamental
trade-off between cache latency and hit rate. The larger the cache, the higher
the hit rate—but larger caches cannot be located as close to the CPU, so they
tend to be slower than smaller ones.

Most game consoles employ at least two levels of cache. The CPU first tries
to find the data it’s looking for in the level 1 (L1) cache. This cache is small
but has a very low access latency. If the data isn’t there, it tries the larger but
higher-latency level 2 (L2) cache. Only if the data cannot be found in the L2
cache do we incur the full cost of a main memory access. Because the latency

158

3. Fundamentals of Software Engineering for Games

CPU Die

PEN I E R BN
Core 0 N cache [N
L2 | AL\ .
Cache NS,Iowest p Main RAM

.

Figure 3.21. Level I and level 2 caches.

of main RAM can be so high relative to the CPU’s clock rate, some PCs even
include a level 3 (L3) cache.

3.4.2.6 Cache Consistency: MESI and MOESI

When multiple CPU cores share a single main memory store, things get more
complicated. It’s typical for each core to have its own L1 cache, but multiple
cores might share an L2 cache, as well as sharing main RAM. See Figure 3.21
for an illustration of a two-level cache architecture with two CPU cores shar-
ing one main memory store and an L2 cache.

In the presence of multiple cores, it’s important for the system to maintain
cache coherency. This amounts to making sure that the data in the caches match
one another and the contents of main RAM. Coherency doesn’t have to be
maintained at every moment—all that matters is that the running program
can never tell that the contents of the caches are out of sync.

The two most common cache coherency protocols are known as MESI
(modified, exclusive, shared, invalid) and MOESI (modified, owned, exclu-
sive, shared, invalid). A detailed discussion of these protocols is outside our
scope here, but you can read more about them on Wikipedia here:
http://en.wikipedia.org/wiki/MOESI_protocol.

3.4.2.7 Avoiding Cache Misses

Obviously cache misses cannot be totally avoided, since data has to move
to and from main RAM eventually. However, the trick to high-performance

34. Pipelines, Caches and Optimization

159

computing is to arrange your data in RAM and code your algorithms in such
a way that the minimum number of cache misses occur.

The best way to avoid D-cache misses is to organize your data in contigu-
ous blocks that are as small as possible and then access them sequentially. This
yields the minimum number of cache misses. When the data is contiguous
(i.e., you don’t “jump around” in memory a lot), a single cache miss will load
the maximum amount of relevant data in one go. When the data is small, it
is more likely to fit into a single cache line (or at least a minimum number
of cache lines). And when you access your data sequentially (i.e., you don’t
“jump around” within the contiguous memory block), you achieve the mini-
mum number of cache misses, since the CPU never has to reload a cache line
from the same region of RAM.

Avoiding I-cache misses follows the same basic principle as avoiding D-
cache misses. However, the implementation requires a different approach.
The easiest thing to do is to keep your high-performance loops as small as
possible in terms of code size, and avoid calling functions within your inner-
most loops. This helps to ensure that the entire body of the loop will remain
in the I-cache the entire time the loop is running.

If your loop does need to call functions, it’s best if the code for the function
being called is located in close proximity in memory to the code containing the
body of the loop. The compiler and linker dictate how your code is laid out in
memory, so you might think you have little control over I-cache misses. How-
ever, most C/C++ linkers follow some simple rules that you can leverage,
once you know what they are:

¢ The machine code for a single function is almost always contiguous in
memory. That is, the linker almost never splits a function up in order
to intersperse another function in the middle. (Inline functions are the
exception to this rule—more on this topic below.)

¢ Functions are laid out in memory in the order they appear in the trans-
lation unit’s source code (.cpp file).

e Therefore, functions in a single translation unit are always contiguous
in memory. That is, the linker does not split up a complied translation
unit (.obj file) in order to intersperse code from some other translation
unit (unless function level linking is enabled?).

2Most modern compilers support function level linking, in which functions are linked into the
executable image individually. This allows uncalled functions to be stripped, for example. Some
compilers even allow the developer to specify the order in which the functions should appear in
the executable.

160 3. Fundamentals of Software Engineering for Games

So, following the same principles that we applied when avoiding D-cache
misses, we should follow the rules of thumb listed below in order to avoid
I-cache misses:

¢ Keep high-performance code as small as possible, in terms of number of
machine language instructions. (The compiler and linker take care of
keeping our functions contiguous in memory.)

* Avoid calling functions from within a performance-critical section of code.

¢ If you do have to call a function, place it as close as possible to the calling
function—preferably immediately before or after the calling function
and never in a different translation unit (because then you completely
lose control over its proximity to the calling function).

* Use inline functions judiciously. Inlining a small function can be a big
performance boost. However, too much inlining bloats the size of the
code, which can cause a performance-critical section of code to no longer
fit within the cache. Let’s say we write a tight loop that processes a
large amount of data—if the entire body of that loop doesn’t fit into
the cache, then we are signing up for two I-cache misses during every
iteration of the loop. In such a situation, it is probably best to rethink the
algorithm and/or implementation so that less code is required within
critical loops.

3.4.3 Instruction Pipelining and Superscalar CPUs

We mentioned in Section 3.4.1 that the recent shift toward parallel processing
applies not only to computers with more than one CPU core, but also to the
cores themselves. There are two closely related architectural devices that can
increase parallelism within the CPU itself: instruction pipelining and superscalar
architecture.

Pipelining can be understood by imagining yourself doing your laundry.
You have a washer and a dryer and too many loads of laundry to count! How
can you get the loads done as quickly as possible? If you take each load and
run it first through the washer and then through the dryer, you're not making
as efficient use of your hardware as you can. While the washer is busy, the
dryer is sitting idle, and vice versa. To increase the efficiency, it’s best to start
anew load washing just as soon as the first load goes into the dryer. That way,
both machines are operating all the time.

CPU instruction pipelining works in a similar fashion. In order to exe-
cute a single machine language instruction, the CPU must perform a number
of steps. These correspond to the washing and drying steps in our analogy

34. Pipelines, Caches and Optimization

161

fetch decode execute memory register
write-back
clock 1 —{ 1
clock 2 ——{ 1
clock 3 — — 2 1
iyl
clock4 — — 3 2 1
L e e
clock 5 — 1 4 3 2 1
I L] L] L]

Figure 3.22. The flow of instructions through a pipelined CPU.

above. First, the instruction must be fetched from memory (or better yet, the
I-cache). Then it must be decoded. It can then be executed. If the instruction
requires a data access, a memory access cycle can be run. Finally, the contents
of registers are written to memory if necessary. Each of these steps is per-
formed by a separate circuit on the CPU, and these circuits are connected to
one another to form a pipeline. The CPU keeps all of these circuits busy all the
time by feeding a new instruction into the pipeline as soon as the first stage
becomes free. This process is illustrated in Figure 3.22.

The latency of a pipeline is the amount of time required to completely pro-
cess a single instruction. This is just the sum of the latencies of all the stages
in the pipeline. The bandwidth or throughput of a pipeline is a measure of how
many instructions it can process per unit time. The bandwidth of a pipeline
is determined by the latency of its slowest stage—much as a chain is only as
strong as its weakest link.

A superscalar processor includes multiple redundant copies of the circuitry
for some or all of its pipeline stages. This allows it to process multiple in-
struction streams in parallel. For example, if the CPU has two integer arith-
metic/logic units (ALUs), then two integer instructions can be in flight simul-
taneously.

We should pause to note here that different types of data often utilize dif-
ferent bits of circuitry on the CPU die. For example, integer arithmetic might
be performed by one circuit, while floating-point math is done by another cir-
cuit, and SIMD vector math is performed by yet a third circuit. This kind of
CPU architecture acts a bit like a superscalar architecture, in that an integer
multiply, a floating-point multiply and a SIMD vector multiply (for example)
can all be performed simultaneously. But to be truly superscalar, a CPU needs
to have multiple integer, floating-point and/or vector units.

162

3. Fundamentals of Software Engineering for Games

fetch decode execute memory register
write-back

clock 1 —

mov
clock 2 —@— mov

mov 5,r3 clock 3 mul |——— mov
mul ro,10,rl
add r1,7,r2 clock 4 mul ——— mov
STALL
clock 5 mul mov
clock 6 mul +
Data Dependency ——))

clock 7 -{ add |

Figure 3.23. A data dependency between instructions causes a pipeline stall.

3.4.3.1 Data Dependencies and Stalls

A pipelined CPU tries to keep all of its stages busy by issuing a new instruc-
tion on every clock cycle. If the results of one instruction are required in order
to execute another instruction, then the later instruction must wait until the
earlier instruction has passed all the way through the pipeline. This can intro-
duce a “bubble” in the pipeline, which degrades throughput.

For example, consider the following sequence of instructions:

mov 5,r3 ;7 load the value 5 into register 3

mul r0,10,rl ;; multiply the contents of r0 by 10,
;; store in rl

add rl,7,r2 ;; add 7 to rl, store in r2

Ideally, we’d like to issue the mov, mul and add instructions on three consec-
utive clock cycles, to keep the pipeline as busy as possible. But in this case, the
results of the mu1l instruction are used by the add instruction. This means that
the CPU must wait until the mul has made it all the way through the pipeline
before issuing the add. If the pipeline contains five stages, that means five
wasted cycles (see Figure 3.23). This is called a data dependency, and it results
in a stall in the pipeline.

Optimizing compilers try to automatically reorder machine instructions in
order to avoid stalls. For example, if the instructions following the three
shown above are not dependent on any previous results, they might be moved
up so that they can be executed while the mu1l is doing its thing.

34. Pipelines, Caches and Optimization

163

3.4.3.2 Branch Prediction

Another way a stall can be introduced is by branching. A branch is what
happens when you use an if statement in your code. Whenever a branch
instruction is encountered, a pipelined CPU has no choice but to try to guess
at which branch is going to be taken. It continues to issue the instructions from
the selected branch, in the hopes that its guess is correct. But we often don’t
know whether or not the guess is wrong until some of the calculations that are
already in flight pop out at the back end of the pipeline. If the guess ends up
being wrong, we’ve executed instructions that shouldn’t have been executed
at all. So the pipeline must be flushed and restarted at the first instruction of
the correct branch.

The simplest guess a CPU can make is to assume that backward branches
are always taken (because this is the kind of branch you find at the end of a
while or for loop) and that forward branches are never taken. Most high-
quality CPUs include branch prediction hardware that can improve the quality
these guesses significantly. A branch predictor can track the results of a branch
instruction over multiple iterations of a loop and discover patterns that help
it make better guesses on subsequent iterations.

On CPUs without good branch prediction hardware, it’s up to the pro-
grammer to improve the performance of the code. This can be done by rewrit-
ing performance-critical loops such that branches are either reduced or en-
tirely eliminated. One approach is to actually perform the calculations for both
cases of a branch and then select between the two results using a branchless
mechanism, such as logically ANDing with a bitmask. The fsel (floating-
point select) instruction is an example of such a mechanism.

PS3 game programmers had to deal with the poor performance of “branchy”
code all the time, because the branch predictors on the Cell processor were
frankly pretty terrible. But the AMD Jaguar CPU on the PS4 has highly ad-
vanced branch prediction hardware, so game programmers can breathe a little
easier when writing code for the PS4.

3.43.3 Load-Hit-Store

A load-hit-store is a particularly bad kind of pipeline stall, prevalent on the
PowerPC architectures found in the Xbox 360 and PlayStation 3. It can hap-
pen when, for example, your code tries to convert a floating-point value into
an integer value and then use that value in subsequent operations. The crux
of the problem in converting a float to an int is that the CPU has no way
to transfer data from its floating-point registers directly into its integer regis-
ters. As such, the value must be written from the floating-point register out to

164

3. Fundamentals of Software Engineering for Games

memory and then loaded back again into an integer register. For example:

stfs £fr3,0(r3) ; Store the float, using r3 as a pointer
1wz r9,0(r3) ; Read it back, this time into an

; integer register
oris 1r9,r9,0x8000 ; Force it to negative

The problem is that the oris instruction has to wait until the data is avail-
able in register r9. It takes multiple cycles to store the data into the L1 cache
and read it back again. During this time, the entire pipeline is forced to stall.
See http://www.gamasutra.com/view /feature/132084/sponsored_feature_
common_.php and http://assemblyrequired.crashworks.org/2008/07/08/
load-hit-stores-and-the-__restrict-keyword for more details.

4
3D Math for Games

A game is a mathematical model of a virtual world simulated in real time
on a computer of some kind. Therefore, mathematics pervades every-
thing we do in the game industry. Game programmers make use of virtu-
ally all branches of mathematics, from trigonometry to algebra to statistics to
calculus. However, by far the most prevalent kind of mathematics you'll be
doing as a game programmer is 3D vector and matrix math (i.e., 3D linear
algebra).

Even this one branch of mathematics is very broad and very deep, so we
cannot hope to cover it in any great depth in a single chapter. Instead, I will
attempt to provide an overview of the mathematical tools needed by a typi-
cal game programmer. Along the way, I'll offer some tips and tricks, which
should help you keep all of the rather confusing concepts and rules straight in
your head. For an excellent in-depth coverage of 3D math for games, I highly
recommend Eric Lengyel’s book on the topic [28].

4.1 Solving 3D Problems in 2D

Many of the mathematical operations we’re going to learn about in the follow-
ing chapter work equally well in 2D and 3D. This is very good news, because
it means you can sometimes solve a 3D vector problem by thinking and draw-
ing pictures in 2D (which is considerably easier to do!) Sadly, this equivalence

165

166

4. 3D Math for Games

Figure 4.1. A point
represented in Car-
tesian coordinates.

Figure 4.2. A point
represented in cylin-
drical coordinates.

between 2D and 3D does not hold all the time. Some operations, like the cross
product, are only defined in 3D, and some problems only make sense when
all three dimensions are considered. Nonetheless, it almost never hurts to
start by thinking about a simplified two-dimensional version of the problem
at hand. Once you understand the solution in 2D, you can think about how
the problem extends into three dimensions. In some cases, you'll happily dis-
cover that your 2D result works in 3D as well. In others, you'll be able to
find a coordinate system in which the problem really is two-dimensional. In
this book, we’ll employ two-dimensional diagrams wherever the distinction
between 2D and 3D is not relevant.

4.2 Points and Vectors

The majority of modern 3D games are made up of three-dimensional objects
in a virtual world. A game engine needs to keep track of the positions, orien-
tations and scales of all these objects, animate them in the game world, and
transform them into screen space so they can be rendered on screen. In games,
3D objects are almost always made up of triangles, the vertices of which are
represented by points. So, before we learn how to represent whole objects in
a game engine, let’s first take a look at the point and its closely related cousin,
the vector.

4.2.1 Points and Cartesian Coordinates

Technically speaking, a point is a location in n-dimensional space. (In games,
n is usually equal to 2 or 3.) The Cartesian coordinate system is by far the
most common coordinate system employed by game programmers. It uses
two or three mutually perpendicular axes to specify a position in 2D or 3D
space. So, a point P is represented by a pair or triple of real numbers, (P,, P,)
or (P, P,, P,) (see Figure 4.1).

Of course, the Cartesian coordinate system is not our only choice. Some
other common systems include:

* Cylindrical coordinates. This system employs a vertical “height” axis h,
a radial axis r emanating out from the vertical, and a yaw angle theta
(6). In cylindrical coordinates, a point P is represented by the triple of
numbers (P, P, Py). This is illustrated in Figure 4.2.

e Spherical coordinates. This system employs a pitch angle phi (¢), a yaw
angle theta (¢) and a radial measurement r. Points are therefore repre-
sented by the triple of numbers (P,, Py, Py). This is illustrated in Fig-
ure 4.3.

4.2. Points and Vectors

167

Cartesian coordinates are by far the most widely used coordinate system
in game programming. However, always remember to select the coordinate
system that best maps to the problem at hand. For example, in the game
Crank the Weasel by Midway Home Entertainment, the main character Crank
runs around an art-deco city picking up loot. I wanted to make the items of
loot swirl around Crank’s body in a spiral, getting closer and closer to him
until they disappeared. I represented the position of the loot in cylindrical
coordinates relative to the Crank character’s current position. To implement
the spiral animation, I simply gave the loot a constant angular speed in 0, a
small constant linear speed inward along its radial axis r and a very slight
constant linear speed upward along the h-axis so the loot would gradually
rise up to the level of Crank’s pants pockets. This extremely simple animation
looked great, and it was much easier to model using cylindrical coordinates
than it would have been using a Cartesian system.

4.2.2 Left-Handed versus Right-Handed Coordinate Systems

In three-dimensional Cartesian coordinates, we have two choices when ar-
ranging our three mutually perpendicular axes: right-handed (RH) and left-
handed (LH). In a right-handed coordinate system, when you curl the fingers
of your right hand around the z-axis with the thumb pointing toward posi-
tive z coordinates, your fingers point from the z-axis toward the y-axis. In a
left-handed coordinate system the same thing is true using your left hand.

The only difference between a left-handed coordinate system and a right-
handed coordinate system is the direction in which one of the three axes is
pointing. For example, if the y-axis points upward and z points to the right,
then z comes toward us (out of the page) in a right-handed system, and away
from us (into the page) in a left-handed system. Left- and right-handed Carte-
sian coordinate systems are depicted in Figure 4.4.

Left-Handed Right-Handed

Figure 4.4. Left- and right-handed Cartesian coordinate systems.

Figure 4.3. A point
represented in spher-
ical coordinates.

168

4. 3D Math for Games

It is easy to convert from left-handed to right-handed coordinates and vice
versa. We simply flip the direction of any one axis, leaving the other two
axes alone. It's important to remember that the rules of mathematics do not
change between left-handed and right-handed coordinate systems. Only our
interpretation of the numbers—our mental image of how the numbers map
into 3D space—changes. Left-handed and right-handed conventions apply
to visualization only, not to the underlying mathematics. (Actually, handed-
ness does matter when dealing with cross products in physical simulations,
because a cross product is not actually a vector—it’s a special mathematical
object known as a pseudovector. We’ll discuss pseudovectors in a little more
depth in Section 4.2.4.9.)

The mapping between the numerical representation and the visual repre-
sentation is entirely up to us as mathematicians and programmers. We could
choose to have the y-axis pointing up, with z forward and z to the left (RH)
or right (LH). Or we could choose to have the z-axis point up. Or the z-axis
could point up instead—or down. All that matters is that we decide upon a
mapping, and then stick with it consistently.

That being said, some conventions do tend to work better than others for
certain applications. For example, 3D graphics programmers typically work
with a left-handed coordinate system, with the y-axis pointing up, z to the
right and positive z pointing away from the viewer (i.e., in the direction the
virtual camera is pointing). When 3D graphics are rendered onto a 2D screen
using this particular coordinate system, increasing z-coordinates correspond
to increasing depth into the scene (i.e., increasing distance away from the vir-
tual camera). As we will see in subsequent chapters, this is exactly what is
required when using a z-buffering scheme for depth occlusion.

4.2.3 Vectors

A vector is a quantity that has both a magnitude and a direction in n-dimensional
space. A vector can be visualized as a directed line segment extending from a
point called the fail to a point called the head. Contrast this to a scalar (i.e., an
ordinary real-valued number), which represents a magnitude but has no di-
rection. Usually scalars are written in italics (e.g., v) while vectors are written
in boldface (e.g., v).

A 3D vector can be represented by a triple of scalars (x, y, z), just as a point
can be. The distinction between points and vectors is actually quite subtle.
Technically, a vector is just an offset relative to some known point. A vector
can be moved anywhere in 3D space—as long as its magnitude and direction
don’t change, it is the same vector.

A vector can be used to represent a point, provided that we fix the tail of
the vector to the origin of our coordinate system. Such a vector is sometimes

4.2. Points and Vectors

169

called a position vector or radius vector. For our purposes, we can interpret any
triple of scalars as either a point or a vector, provided that we remember that
a position vector is constrained such that its tail remains at the origin of the
chosen coordinate system. This implies that points and vectors are treated in
subtly different ways mathematically. One might say that points are absolute,
while vectors are relative.

The vast majority of game programmers use the term “vector” to refer
both to points (position vectors) and to vectors in the strict linear algebra
sense (purely directional vectors). Most 3D math libraries also use the term
“vector” in this way. In this book, we’ll use the term “direction vector” or
just “direction” when the distinction is important. Be careful to always keep
the difference between points and directions clear in your mind (even if your
math library doesn’t). As we’ll see in Section 4.3.6.1, directions need to be
treated differently from points when converting them into homogeneous co-
ordinates for manipulation with 4 x 4 matrices, so getting the two types of
vector mixed up can and will lead to bugs in your code.

4.2.3.1 Cartesian Basis Vectors

It is often useful to define three orthogonal unit vectors (i.e., vectors that are mu-
tually perpendicular and each with a length equal to one), corresponding to
the three principal Cartesian axes. The unit vector along the z-axis is typically
called i, the y-axis unit vector is called j, and the z-axis unit vector is called k.
The vectors i, j and k are sometimes called Cartesian basis vectors.

Any point or vector can be expressed as a sum of scalars (real numbers)
multiplied by these unit basis vectors. For example,

(5,3,—2) = 5i + 3j — 2k.

4.2.4 Vector Operations

Most of the mathematical operations that you can perform on scalars can be
applied to vectors as well. There are also some new operations that apply only
to vectors.

4.2.4.1 Multiplication by a Scalar

Multiplication of a vector a by a scalar s is accomplished by multiplying the
individual components of a by s:

sa = (say, say, sa).

170

4. 3D Math for Games

Figure 4.5. Multiplication of a vector by the scalar 2.

Multiplication by a scalar has the effect of scaling the magnitude of the
vector, while leaving its direction unchanged, as shown in Figure 4.5. Multi-
plication by —1 flips the direction of the vector (the head becomes the tail and
vice versa).

The scale factor can be different along each axis. We call this nonuniform
scale, and it can be represented as the component-wise product of a scaling vector
s and the vector in question, which we’ll denote with the ® operator. Techni-
cally speaking, this special kind of product between two vectors is known as
the Hadamard product. 1t is rarely used in the game industry—in fact, nonuni-
form scaling is one of its only commonplace uses in games:

S®a = (Sy0z, Syay, $.a5). 4.1)

As we'll see in Section 4.3.7.3, a scaling vector s is really just a compact
way to represent a 3 x 3 diagonal scaling matrix S. So another way to write
Equation (4.1) is as follows:

s, 0 0
aS:[az Qy az] 0 s, O :[smam SyQy szaz}.
0 0 s,

We'll explore matrices in more depth in Section 4.3.
4.2.4.2 Addition and Subtraction

The addition of two vectors a and b is defined as the vector whose compo-
nents are the sums of the components of a and b. This can be visualized by
placing the head of vector a onto the tail of vector b—the sum is then the
vector from the tail of a to the head of b (see also Figure 4.6):

a+b = [(az +by), (ay +by), (a. +b.)].

Vector subtraction a — b is nothing more than addition of a and —b (i.e., the
result of scaling b by —1, which flips it around). This corresponds to the vector

4.2. Points and Vectors

171

Aax

Figure 4.6. Vector addition and subtraction. Figure 4.7. Magnitude of a vector (shown
in 2D for ease of illustration).

whose components are the difference between the components of a and the
components of b:

a—b= [(ax —by), (ay — by), (as — bz)} .
Vector addition and subtraction are depicted in Figure 4.6.

Adding and Subtracting Points and Directions

You can add and subtract direction vectors freely. However, technically speak-
ing, points cannot be added to one another—you can only add a direction vec-
tor to a point, the result of which is another point. Likewise, you can take the
difference between two points, resulting in a direction vector. These opera-
tions are summarized below:

e direction + direction = direction
e direction — direction = direction
* point + direction = point
* point — point = direction

® point + point = nonsense

4243 Magnitude

The magnitude of a vector is a scalar representing the length of the vector as
it would be measured in 2D or 3D space. It is denoted by placing vertical bars
around the vector’s boldface symbol. We can use the Pythagorean theorem to
calculate a vector’s magnitude, as shown in Figure 4.7:

la| = /a2 + a? + aZ.

172

4. 3D Math for Games

Figure 4.8. Simple
vector addition can be
used to find a char-
acter’s position in the
next frame, given her
position and velocity
in the current frame.

4.2.44 Vector Operations in Action

Believe it or not, we can already solve all sorts of real-world game problems
given just the vector operations we’ve learned thus far. When trying to solve a
problem, we can use operations like addition, subtraction, scaling and magni-
tude to generate new data out of the things we already know. For example, if
we have the current position vector of an Al character P, and a vector v rep-
resenting her current velocity, we can find her position on the next frame P,
by scaling the velocity vector by the frame time interval A¢, and then adding it
to the current position. As shown in Figure 4.8, the resulting vector equation
is Po = Py + v At. (This is known as explicit Euler integration—it’s actually
only valid when the velocity is constant, but you get the idea.)

As another example, let’s say we have two spheres, and we want to know
whether they intersect. Given that we know the center points of the two
spheres, C; and C,, we can find a direction vector between them by sim-
ply subtracting the points, d = C, — C;. The magnitude of this vector d = |d|
determines how far apart the spheres’ centers are. If this distance is less than
the sum of the spheres’ radii, they are intersecting; otherwise they’re not. This
is shown in Figure 4.9.

Square roots are expensive to calculate on most computers, so game pro-
grammers should always use the squared magnitude whenever it is valid to do
s0:

|la|* = (a2 + a; + a?).

Using the squared magnitude is valid when comparing the relative lengths
of two vectors (“is vector a longer than vector b?”), or when comparing a

Figure 4.9. A sphere-sphere intersection test involves only vector subtraction, vector magnitude
and floating-point comparison operations.

4.2. Points and Vectors

173

vector’s magnitude to some other (squared) scalar quantity. So in our sphere-
sphere intersection test, we should calculate d*> = |d|? and compare this to
the squared sum of the radii, (r; + r2)? for maximum speed. When writing
high-performance software, never take a square root when you don’t have to!

4.2.4.5 Normalization and Unit Vectors

A unit vector is a vector with a magnitude (length) of one. Unit vectors are
very useful in 3D mathematics and game programming, for reasons we’ll see
below.

Given an arbitrary vector v of length v = |v|, we can convert it to a unit
vector u that points in the same direction as v, but has unit length. To do
this, we simply multiply v by the reciprocal of its magnitude. We call this
normalization:

4.2.4.6 Normal Vectors

A vector is said to be normal to a surface if it is perpendicular to that surface.
Normal vectors are highly useful in games and computer graphics. For exam-
ple, a plane can be defined by a point and a normal vector. And in 3D graphics,
lighting calculations make heavy use of normal vectors to define the direction
of surfaces relative to the direction of the light rays impinging upon them.

Normal vectors are usually of unit length, but they do not need to be.
Be careful not to confuse the term “normalization” with the term “normal
vector.” A normalized vector is any vector of unit length. A normal vector
is any vector that is perpendicular to a surface, whether or not it is of unit
length.

4.2.4.7 Dot Product and Projection

Vectors can be multiplied, but unlike scalars there are a number of different
kinds of vector multiplication. In game programming, we most often work
with the following two kinds of multiplication:

¢ the dot product (a.k.a. scalar product or inner product), and
e the cross product (a.k.a. vector product or outer product).

The dot product of two vectors yields a scalar; it is defined by adding the
products of the individual components of the two vectors:

a-b=uayb, +ayby,+a.b, =d (ascalar).

174

4. 3D Math for Games

The dot product can also be written as the product of the magnitudes of the
two vectors and the cosine of the angle between them:

a-b = |a||b|cosf.
The dot product is commutative (i.e., the order of the two vectors can be
reversed) and distributive over addition:
a-b=>b-a;
a-(b+c)=a-b+a-c.
And the dot product combines with scalar multiplication as follows:

sa-b=a-sb=s(a-b).

Vector Projection

If u is a unit vector (Ju| = 1), then the dot product (a- u) represents the length
of the projection of vector a onto the infinite line defined by the direction of
u, as shown in Figure 4.10. This projection concept works equally well in 2D
or 3D and is highly useful for solving a wide variety of three-dimensional
problems.

a-u

Figure 4.10. Vector projection using the dot product.

Magnitude as a Dot Product

The squared magnitude of a vector can be found by taking the dot product of
that vector with itself. Its magnitude is then easily found by taking the square
root:

laj? = a-a;
laj| =+va-a.

This works because the cosine of zero degrees is 1, so |a||a|cosf = |a||a] =
la?.

4.2. Points and Vectors

175

a
/b (a*b)=ab .

a

(a*b)=-ab

=2

(a'b)=0

b
a

4 (a-b)>0 b
b

Figure 4.11. Some common dot product tests.

(a*b)<0

Dot Product Tests

Dot products are great for testing if two vectors are collinear or perpendicular,
or whether they point in roughly the same or roughly opposite directions. For
any two arbitrary vectors a and b, game programmers often use the following
tests, as shown in Figure 4.11:

e Collinear. (a-b) = |a| |b| = ab (i.e., the angle between them is exactly 0
degrees—this dot product equals +1 when a and b are unit vectors).

e Collinear but opposite. (a-b) = —ab (i.e., the angle between them is 180
degrees—this dot product equals —1 when a and b are unit vectors).

* Perpendicular. (a-b) = 0 (i.e., the angle between them is 90 degrees).

* Same direction. (a-b) > 0 (i.e., the angle between them is less than 90
degrees).

* Opposite directions. (a-b) < 0 (i.e., the angle between them is greater
than 90 degrees).

Some Other Applications of the Dot Product

Dot products can be used for all sorts of things in game programming. For
example, let’s say we want to find out whether an enemy is in front of the
player character or behind him. We can find a vector from the player’s posi-
tion P to the enemy’s position E by simple vector subtraction (v = E — P).
Let’s assume we have a vector f pointing in the direction that the player is
facing. (As we'll see in Section 4.3.10.3, the vector f can be extracted directly
from the player’s model-to-world matrix.) The dot product d = v - f can be

176

4. 3D Math for Games

Figure 4.13. The
cross product of
vectors a and b
(right-handed).

Figure 4.12. The dot product can be used to find the height of a point above or below a plane.

used to test whether the enemy is in front of or behind the player—it will be
positive when the enemy is in front and negative when the enemy is behind.

The dot product can also be used to find the height of a point above or
below a plane (which might be useful when writing a moon-landing game
for example). We can define a plane with two vector quantities: a point Q
lying anywhere on the plane, and a unit vector n that is perpendicular (i.e.,
normal) to the plane. To find the height & of a point P above the plane, we
first calculate a vector from any point on the plane (Q will do nicely) to the
point in question P. So we have v = P — Q. The dot product of vector v with
the unit-length normal vector n is just the projection of v onto the line defined
by n. But that is exactly the height we’re looking for. Therefore,

h=v-n=(P-Q) -n 4.2)
This is illustrated in Figure 4.12.

4.2.4.8 Cross Product

The cross product (also known as the outer product or vector product) of two vec-
tors yields another vector that is perpendicular to the two vectors being multi-
plied, as shown in Figure 4.13. The cross product operation is only defined in
three dimensions:

axb= [(aybz - azby)7 (azbw - aa;bz)a (alby - aybz)]
= (ayb, — a.by)i+ (a;by — azb,)j + (azb, — ayby)k.

Magnitude of the Cross Product

The magnitude of the cross product vector is the product of the magnitudes
of the two vectors and the sine of the angle between them. (This is similar to
the definition of the dot product, but it replaces the cosine with the sine.)

4.2. Points and Vectors

177

Figure 4.14. Area of a parallelogram expressed as the magnitude of a cross product.

The magnitude of the cross product |a x b| is equal to the area of the paral-
lelogram whose sides are a and b, as shown in Figure 4.14. Since a triangle is
one half of a parallelogram, the area of a triangle whose vertices are specified
by the position vectors Vi, V, and V3 can be calculated as one half of the
magnitude of the cross product of any two of its sides:

Atriangle = % |(V2 - Vl) X (Vd - V1)| .

Direction of the Cross Product

When using a right-handed coordinate system, you can use the right-hand rule
to determine the direction of the cross product. Simply cup your fingers such
that they point in the direction you’d rotate vector a to move it on top of vector
b, and the cross product (a x b) will be in the direction of your thumb.

Note that the cross product is defined by the left-hand rule when using
a left-handed coordinate system. This means that the direction of the cross
product changes depending on the choice of coordinate system. This might
seem odd at first, but remember that the handedness of a coordinate system
does not affect the mathematical calculations we carry out—it only changes
our visualization of what the numbers look like in 3D space. When converting
from a right-handed system to a left-handed system or vice versa, the numer-
ical representations of all the points and vectors stay the same, but one axis
flips. Our visualization of everything is therefore mirrored along that flipped
axis. So if a cross product just happens to align with the axis we're flipping
(e.g., the z-axis), it needs to flip when the axis flips. If it didn’t, the mathe-
matical definition of the cross product itself would have to be changed so that
the z-coordinate of the cross product comes out negative in the new coordi-
nate system. I wouldn’t lose too much sleep over all of this. Just remember:
when visualizing a cross product, use the right-hand rule in a right-handed
coordinate system and the left-hand rule in a left-handed coordinate system.

178

4. 3D Math for Games

Properties of the Cross Product

The cross product is not commutative (i.e., order matters):

axb#bxa.
However, it is anti-commutative:
axb=—(bxa).
The cross product is distributive over addition:
ax(b+c)=(axb)+(axc).
And it combines with scalar multiplication as follows:
(sa) x b=a x (sb) = s(a x b).
The Cartesian basis vectors are related by cross products as follows:

ixj= -
Jxk= —(kxj
kxi= —(ixk)=]j

These three cross products define the direction of positive rotations about the
Cartesian axes. The positive rotations go from z to y (about %), from y to z
(about x) and from z to x (about ¥). Notice how the rotation about the y-axis
“reversed” alphabetically, in that it goes from z to = (not from z to z). As we’ll
see below, this gives us a hint as to why the matrix for rotation about the y-
axis looks inverted when compared to the matrices for rotation about the -
and z-axes.

The Cross Product in Action

The cross product has a number of applications in games. One of its most
common uses is for finding a vector that is perpendicular to two other vectors.
As we'll see in Section 4.3.10.2, if we know an object’s local unit basis vectors,
(i10cal, Jiocal and Kkioca1), we can easily find a matrix representing the object’s
orientation. Let’s assume that all we know is the object’s kjoca Vector—i.e., the
direction in which the object is facing. If we assume that the object has no roll
about kjpear, then we can find ijoca by taking the cross product between kjocal
(which we already know) and the world-space up vector jyong (Which equals

4.2. Points and Vectors

179

[010]). We do so as follows: ijpca1 = normalize(jyword X Kiocal). We can then
find jiocal by simply crossing ijocal and Kiocal as follows: jiocal = Kiocal X ilocal-

A very similar technique can be used to find a unit vector normal to the
surface of a triangle or some other plane. Given three points on the plane, Py,
P, and Pj, the normal vector is just n = normalize (P2 — P1) x (P3 — Py)).

Cross products are also used in physics simulations. When a force is ap-
plied to an object, it will give rise to rotational motion if and only if it is ap-
plied off-center. This rotational force is known as a torque, and it is calculated
as follows. Given a force F, and a vector r from the center of mass to the point
at which the force is applied, the torque N =r x F.

4249 Pseudovectors and Exterior Algebra

We mentioned in Section 4.2.2 that the cross product doesn’t actually produce
a vector—it produces a special kind of mathematical object known as a pseu-
dovector. The difference between a vector and a pseudovector is pretty sub-
tle. In fact, you can’t tell the difference between them at all when performing
the kinds of transformations we normally encounter in game programming—
translation, rotation and scaling. It's only when you reflect the coordinate sys-
tem (as happens when you move from a left-handed coordinate system to a
right-handed system) that the special nature of pseudovectors becomes ap-
parent. Under reflection, a vector transforms into its mirror image, as you’'d
probably expect. But when a pseudovector is reflected, it transforms into its
mirror image and also changes direction.

Positions and all of the derivatives thereof (linear velocity, acceleration,
jerk) are represented by true vectors (also known as polar vectors or contravari-
ant vectors). Angular velocities and magnetic fields are represented by pseu-
dovectors (also known as axial vectors, covariant vectors, bivectors or 2-blades).
The surface normal of a triangle (which is calculated using a cross product) is
also a pseudovector.

It’s pretty interesting to note that the cross product (A x B), the scalar triple
product (A - (B x C)) and the determinant of a matrix are all inter-related, and
pseudovectors lie at the heart of it all. Mathematicians have come up with
a set of algebraic rules, called an exterior algebra or Grassman algebra, which
describe how vectors and pseudovectors work and allow us to calculate areas
of parallelograms (in 2D), volumes of parallelepipeds (in 3D), and so on in
higher dimensions.

We won't get into all the details here, but the basic idea of Grassman al-
gebra is to introduce a special kind of vector product known as the wedge
product, denoted A A B. A pairwise wedge product yields a pseudovector
and is equivalent to a cross product, which also represents the signed area of

180

4. 3D Math for Games

UAVAW

@.'

u

Figure 4.15. In the exterior algebra (Grassman algebra), a single wedge product yields a pseu-
dovector or bivector, and two wedge products yields a pseudoscalar or trivector.

the parallelogram formed by the two vectors (where the sign tells us whether
we're rotating from A to B or vice versa). Doing two wedge products in a row,
A ABAC,is equivalent to the scalar triple product A - (B x C) and produces
another strange mathematical object known as a pseudoscalar (also known as
a trivector or a 3-blade), which can be interpreted as the signed volume of the
parallelepiped formed by the three vectors (see Figure 4.15). This extends into
higher dimensions as well.

What does all this mean for us as game programmers? Not too much. All
we really need to keep in mind is that some vectors in our code are actually
pseudovectors, so that we can transform them properly when changing hand-
edness, for example. Of course if you really want to geek out, you can impress
your friends by talking about exterior algebras and wedge products and explain-
ing how cross products aren’t really vectors. Which might make you look cool
at your next social engagement ... or not.

For more information, see http://en.wikipedia.org/wiki/Pseudovector and
http://en.wikipedia.org/wiki/Exterior_algebra.

4.3. Matrices

181

p=1

Figure 4.16. Linear interpolation (LERP) between points A and B, with § = 0.4.

4.2.5 Linear Interpolation of Points and Vectors

In games, we often need to find a vector that is midway between two known
vectors. For example, if we want to smoothly animate an object from point A
to point B over the course of two seconds at 30 frames per second, we would
need to find 60 intermediate positions between A and B.

A linear interpolation is a simple mathematical operation that finds an in-
termediate point between two known points. The name of this operation is
often shortened to LERP. The operation is defined as follows, where § ranges
from 0 to 1 inclusive:

L =LERP(A,B,3) = (1 - 8)A + 8B
= [(1=B)Az + BB, (1-B)Ay+ BBy, (1—PB)A:+BB.]

Geometrically, L = LERP(A, B,) is the position vector of a point that lies
f3 percent of the way along the line segment from point A to point B, as shown
in Figure 4.16. Mathematically, the LERP function is just a weighted average of
the two input vectors, with weights (1 —) and 3, respectively. Notice that
the weights always add to 1, which is a general requirement for any weighted
average.

4.3 Matrices

A matrix is a rectangular array of m x n scalars. Matrices are a convenient way
of representing linear transformations such as translation, rotation and scale.

A matrix M is usually written as a grid of scalars M,.. enclosed in square
brackets, where the subscripts r and ¢ represent the row and column indices of
the entry, respectively. For example, if M is a 3 x 3 matrix, it could be written

as follows:
My1 My M3
M= [My1 My Ms3
Mz Mss Mss

182

4. 3D Math for Games

We can think of the rows and/or columns of a 3 x 3 matrix as 3D vectors.
When all of the row and column vectors of a 3x 3 matrix are of unit magnitude,
we call it a special orthogonal matrix. This is also known as an isotropic matrix,
or an orthonormal matrix. Such matrices represent pure rotations.

Under certain constraints, a 4 x4 matrix can represent arbitrary 3D transfor-
mations, including translations, rotations, and changes in scale. These are called
transformation matrices, and they are the kinds of matrices that will be most
useful to us as game engineers. The transformations represented by a matrix
are applied to a point or vector via matrix multiplication. We’ll investigate
how this works below.

An affine matrix is a 4 x 4 transformation matrix that preserves parallelism
of lines and relative distance ratios, but not necessarily absolute lengths and
angles. An affine matrix is any combination of the following operations: rota-
tion, translation, scale and /or shear.

4.3.1 Matrix Multiplication

The product P of two matrices A and B is written P = AB. If A and B are
transformation matrices, then the product P is another transformation ma-
trix that performs both of the original transformations. For example, if A is a
scale matrix and B is a rotation, the matrix P would both scale and rotate the
points or vectors to which it is applied. This is particularly useful in game pro-
gramming, because we can precalculate a single matrix that performs a whole
sequence of transformations and then apply all of those transformations to a
large number of vectors efficiently.

To calculate a matrix product, we simply take dot products between the
rows of the na x ma matrix A and the columns of the ng x mp matrix B.
Each dot product becomes one component of the resulting matrix P. The
two matrices can be multiplied as long as the inner dimensions are equal (i.e.,
ma = ng). For example, if A and B are 3 x 3 matrices, then P = AB may be
expressed as follows:

(P11 Pia Pi3
P=|Pn P Py
| P31 P32 Pss

Arowl . Bcoll Arowl . BcolZ Arowl . Bcol3
= ArowZ . Bcoll Ar0w2 . BcolZ ArowZ . Bc013
Arow3 : Bcoll Arow3 . Bc012 Arow3 : BcolS

4.3. Matrices

183

Matrix multiplication is not commutative. In other words, the order in
which matrix multiplication is done matters:

AB #BA

We'll see exactly why this matters in Section 4.3.2.

Matrix multiplication is often called concatenation, because the product of
n transformation matrices is a matrix that concatenates, or chains together,
the original sequence of transformations in the order the matrices were multi-

plied.

4.3.2 Representing Points and Vectors as Matrices

Points and vectors can be represented as row matrices (1 x n) or column matrices
(n x 1), where n is the dimension of the space we're working with (usually 2
or 3). For example, the vector v = (3, 4, — 1) can be written either as

vy = [3 4 —1]

or as

Here, the superscripted T represents matrix transposition (see Section 4.3.5).

The choice between column and row vectors is a completely arbitrary one,
but it does affect the order in which matrix multiplications are written. This
happens because when multiplying matrices, the inner dimensions of the two
matrices must be equal, so

¢ tomultiply a 1 x n row vector by an n x n matrix, the vector must appear
to the left of the matrix (v ,,, = Vixn Muxn), whereas

e to multiply an n x n matrix by an n x 1 column vector, the vector must
appear to the right of the matrix (v}, .; = My xn Vix1)-

If multiple transformation matrices A, B and C are applied in order to a
vector v, the transformations “read” from left to right when using row vectors,
but from right to left when using column vectors. The easiest way to remember
this is to realize that the matrix closest to the vector is applied first. This is
illustrated by the parentheses below:

v = (((vA)B)C) Row vectors: read left-to-right;
v = (CT(BT(ATVT))) Column vectors: read right-to-left.

184

4. 3D Math for Games

In this book we’ll adopt the row vector convention, because the left-to-right
order of transformations is most intuitive to read for English-speaking people.
That said, be very careful to check which convention is used by your game
engine, and by other books, papers or web pages you may read. You can
usually tell by seeing whether vector-matrix multiplications are written with
the vector on the left (for row vectors) or the right (for column vectors) of the
matrix. When using column vectors, you’ll need to transpose all the matrices
shown in this book.

433 The Identity Matrix

The identity matrix is a matrix that, when multiplied by any other matrix,
yields the very same matrix. It is usually represented by the symbol I. The
identity matrix is always a square matrix with 1’s along the diagonal and 0’s
everywhere else:

1 0 0
I3><3: 0 1 0 3
0 0 1

Al =TA = A.

43.4 Matrix Inversion

The inverse of a matrix A is another matrix (denoted A ~!) that undoes the ef-
fects of matrix A. So, for example, if A rotates objects by 37 degrees about
the z-axis, then A~! will rotate by —37 degrees about the z-axis. Likewise,
if A scales objects to be twice their original size, then A1 scales objects to
be half-sized. When a matrix is multiplied by its own inverse, the result is
always the identity matrix, so A(A~!) = (A~!)A = L. Not all matrices have
inverses. However, all affine matrices (combinations of pure rotations, trans-
lations, scales and shears) do have inverses. Gaussian elimination or lower-
upper (LU) decomposition can be used to find the inverse, if one exists.

Since we'll be dealing with matrix multiplication a lot, it’s important to
note here that the inverse of a sequence of concatenated matrices can be writ-
ten as the reverse concatenation of the individual matrices’ inverses. For example,

(ABC)'=C'B'A L

4.3. Matrices

185

4.3.5 Transposition

The transpose of a matrix M is denoted MT. It is obtained by reflecting the
entries of the original matrix across its diagonal. In other words, the rows of
the original matrix become the columns of the transposed matrix, and vice
versa:

a b]’ a d g

d e f| =1b e h

g h 1 c f 1

The transpose is useful for a number of reasons. For one thing, the inverse
of an orthonormal (pure rotation) matrix is exactly equal to its transpose—
which is good news, because it’s much cheaper to transpose a matrix than
it is to find its inverse in general. Transposition can also be important when
moving data from one math library to another, because some libraries use
column vectors while others expect row vectors. The matrices used by a row-
vector—based library will be transposed relative to those used by a library that
employs the column vector convention.

As with the inverse, the transpose of a sequence of concatenated matri-
ces can be rewritten as the reverse concatenation of the individual matrices’
transposes. For example,

(ABC)T = CTBTAT.

This will prove useful when we consider how to apply transformation matri-
ces to points and vectors.

4.3.6 Homogeneous Coordinates

You may recall from high-school algebra that a 2 x 2 matrix can represent a
rotation in two dimensions. To rotate a vector r through an angle of ¢ degrees
(where positive rotations are counterclockwise), we can write

T cos¢p sing
)=l) [5Y d)
It’s probably no surprise that rotations in three dimensions can be represented
by a 3 x 3 matrix. The two-dimensional example above is really just a three-
dimensional rotation about the z-axis, so we can write

cos¢ sing 0
=[ry 7y 7.]|—sing cos¢ 0
0 0 1

186

4. 3D Math for Games

The question naturally arises: Can a 3 x 3 matrix be used to represent
translations? Sadly, the answer is no. The result of translating a point r by
a translation t requires adding the components of t to the components of r
individually:

r+t=[(ro+ts) (ry+t,) (r.+t)].

Matrix multiplication involves multiplication and addition of matrix elements,
so the idea of using multiplication for translation seems promising. But, un-
fortunately, there is no way to arrange the components of t within a 3 x 3
matrix such that the result of multiplying it with the column vector r yields
sums like (ry +¢5).

The good news is that we can obtain sums like this if we use a 4 x 4 matrix.
What would such a matrix look like? Well, we know that we don’t want any
rotational effects, so the upper 3 x 3 should contain an identity matrix. If
we arrange the components of t across the bottom-most row of the matrix
and set the fourth element of the r vector (usually called w) equal to 1, then
taking the dot product of the vector r with column 1 of the matrix will yield
(1-72)+(0-7y)+(0-7.)+ (tz - 1), which is exactly what we want. If the bottom
right-hand corner of the matrix contains a 1 and the rest of the fourth column
contains zeros, then the resulting vector will also have a 1 in its w component.
Here’s what the final 4 x 4 translation matrix looks like:

1 0 00
0 1 0 0
S
te t, t, 1

= [(re+t) (ry+t) (ra+t) 1]

When a point or vector is extended from three dimensions to four in this
manner, we say that it has been written in homogeneous coordinates. A point
in homogeneous coordinates always has w = 1. Most of the 3D matrix math
done by game engines is performed using 4 x 4 matrices with four-element
points and vectors written in homogeneous coordinates.

4.3.6.1 Transforming Direction Vectors

Mathematically, points (position vectors) and direction vectors are treated in
subtly different ways. When transforming a point by a matrix, the translation,
rotation and scale of the matrix are all applied to the point. But when trans-
forming a direction by a matrix, the translational effects of the matrix are ig-
nored. This is because direction vectors have no translation per se—applying
a translation to a direction would alter its magnitude, which is usually not
what we want.

4.3. Matrices

187

In homogeneous coordinates, we achieve this by defining points to have
their w components equal to one, while direction vectors have their w compo-
nents equal to zero. In the example below, notice how the w = 0 component
of the vector v multiplies with the t vector in the matrix, thereby eliminating
translation in the final result:

U o0
v 0] [t 1] U+ 0 0] =[vU 0.

Technically, a point in homogeneous (four-dimensional) coordinates can
be converted into non-homogeneous (three-dimensional) coordinates by di-
viding the z, y and z components by the w component:

[r oy oz
v el= G)

This sheds some light on why we set a point’s w component to one and a
vector’s w component to zero. Dividing by w = 1 has no effect on the coordi-
nates of a point, but dividing a pure direction vector’s components by w = 0
would yield infinity. A point at infinity in 4D can be rotated but not translated,
because no matter what translation we try to apply, the point will remain at
infinity. So in effect, a pure direction vector in three-dimensional space acts
like a point at infinity in four-dimensional homogeneous space.

4.3.7 Atomic Transformation Matrices

Any affine transformation matrix can be created by simply concatenating a
sequence of 4 x 4 matrices representing pure translations, pure rotations, pure
scale operations and/or pure shears. These atomic transformation building
blocks are presented below. (We'll omit shear from these discussions, as it
tends to be used only rarely in games.)

Notice that all affine 4 x 4 transformation matrices can be partitioned into
four components:

U 0
Mafﬁne _ [3Ix3 3><1])

ti1x3 1

¢ the upper 3 x 3 matrix U, which represents the rotation and/or scale,
e al x 3translation vector t,
* a3 x1vectorofzeros0=[0 0 0] T and

¢ ascalar 1 in the bottom-right corner of the matrix.

188

4. 3D Math for Games

When a point is multiplied by a matrix that has been partitioned like this, the
result is as follows:

i3 1] =[rixs 1] {?13:33 031><1:| — (U +t) 1]

43.71 Translation

The following matrix translates a point by the vector t:

1 0 0 0
0 1 0 O

r—l—t:[rw Ty T 1] 0 0 1 0 (4.3)
te t, t. 1

=[(ra+ta) (ry+t,) (r2+t.) 1],

or in partitioned shorthand:

I o
el O =lery 0.
To invert a pure translation matrix, simply negate the vector t (i.e., negate t,,
tyandt,).
4.3.7.2 Rotation

All 4 x 4 pure rotation matrices have the form

R 0
1] [0 J ~[R 1].
The t vector is zero, and the upper 3 x 3 matrix R contains cosines and sines
of the rotation angle, measured in radians.

The following matrix represents rotation about the z-axis by an angle ¢.

1 0 0 0
0 cos sin 0

rotatey (r,¢) = [re ry . 1] 0 —sin¢¢ cos(jb 0 (4.4)
0 0 0 1

The matrix below represents rotation about the y-axis by an angle 6. (Notice
that this one is transposed relative to the other two—the positive and negative
sine terms have been reflected across the diagonal.)

cos# 0 —sinfd 0
0 1 0 0

rotatey (r,0) = [r, 1y, 7. 1] sind 0 cosf 0 (4.5)
0 0 0 1

4.3. Matrices

189

The following matrix represents rotation about the z-axis by an angle +:

cosy siny 0 O
—siny cosy 0 O
0 0 1 0

0 0 0 1

rotate,(r,y) = [rw Ty T 1] (4.6)

Here are a few observations about these matrices:

¢ The 1 within the upper 3 x 3 always appears on the axis we're rotating
about, while the sine and cosine terms are off-axis.

¢ Positive rotations go from z to y (about z), from y to z (about =) and from
z to = (about y). The z to x rotation “wraps around,” which is why the
rotation matrix about the y-axis is transposed relative to the other two.
(Use the right-hand or left-hand rule to remember this.)

e The inverse of a pure rotation is just its transpose. This works because
inverting a rotation is equivalent to rotating by the negative angle. You
may recall that cos(—6) = cos(f) while sin(—6) = —sin(f), so negating
the angle causes the two sine terms to effectively switch places, while
the cosine terms stay put.

43.73 Scale

The following matrix scales the point r by a factor of s, along the z-axis, s,
along the y-axis and s, along the z-axis:

s 0 0 0
0 s 0

rS:[rw Ty Ts 1] 0 6’ 5. 0 4.7)
0O 0 0 1

:[sxrw SyTy 82T 1],

or in partitioned shorthand:

v 1] [53(;3 ?]:[rsgxg 1.

Here are some observations about this kind of matrix:

* To invert a scaling matrix, simply substitute s,, s, and s, with their
reciprocals (i.e., 1/s,, 1/s, and 1/s,).

¢ When the scale factor along all three axes is the same (s, = s, = s.),
we call this uniform scale. Spheres remain spheres under uniform scale,
whereas under nonuniform scale they become ellipsoids. To keep the

190

4. 3D Math for Games

mathematics of bounding sphere checks simple and fast, many game
engines impose the restriction that only uniform scale may be applied
to renderable geometry or collision primitives.

e When a uniform scale matrix S,, and a rotation matrix R are concate-
nated, the order of multiplication is unimportant (i.e., S,R = RS,).
This only works for uniform scale!

43.8 4 x 3 Matrices

The rightmost column of an affine 4 x 4 matrix always contains the vector
0 0 0 1] T, As such, game programmers often omit the fourth column to
save memory. You'll encounter 4 x 3 affine matrices frequently in game math
libraries.

4.3.9 Coordinate Spaces

We’ve seen how to apply transformations to points and direction vectors us-
ing 4 x 4 matrices. We can extend this idea to rigid objects by realizing that
such an object can be thought of as an infinite collection of points. Applying
a transformation to a rigid object is like applying that same transformation to
every point within the object. For example, in computer graphics an object is
usually represented by a mesh of triangles, each of which has three vertices
represented by points. In this case, the object can be transformed by applying
a transformation matrix to all of its vertices in turn.

We said above that a point is a vector whose tail is fixed to the origin of
some coordinate system. This is another way of saying that a point (position
vector) is always expressed relative to a set of coordinate axes. The triplet
of numbers representing a point changes numerically whenever we select a
new set of coordinate axes. In Figure 4.17, we see a point P represented by
two different position vectors—the vector P 4 gives the position of P relative

X

Figure 4.17. Position vectors for the point P relative to different coordinate axes.

4.3. Matrices

191

to the “A” axes, while the vector P gives the position of that same point
relative to a different set of axes “B.”

In physics, a set of coordinate axes represents a frame of reference, so we
sometimes refer to a set of axes as a coordinate frame (or just a frame). People in
the game industry also use the term coordinate space (or simply space) to refer
to a set of coordinate axes. In the following sections, we'll look at a few of the
most common coordinate spaces used in games and computer graphics.

4.3.9.1 Model Space

When a triangle mesh is created in a tool such as Maya or 3DStudioMAX, the
positions of the triangles’ vertices are specified relative to a Cartesian coor-
dinate system, which we call model space (also known as object space or local
space). The model-space origin is usually placed at a central location within
the object, such as at its center of mass, or on the ground between the feet of a
humanoid or animal character.

Most game objects have an inherent directionality. For example, an air-
plane has a nose, a tail fin and wings that correspond to the front, up and
left/right directions. The model-space axes are usually aligned to these natu-
ral directions on the model, and they’re given intuitive names to indicate their
directionality as illustrated in Figure 4.18.

e Front. This name is given to the axis that points in the direction that the
object naturally travels or faces. In this book, we’ll use the symbol F to
refer to a unit basis vector along the front axis.

* Up. This name is given to the axis that points towards the top of the
object. The unit basis vector along this axis will be denoted U.

* Left or right. The name “left” or “right” is given to the axis that points
toward the left or right side of the object. Which name is chosen de-
pends on whether your game engine uses left-handed or right-handed

EX,

U

,, x|
-

Figure 4.18. One possible choice of the model-space front, left and up axis basis vectors for an
airplane.

192 4. 3D Math for Games

coordinates. The unit basis vector along this axis will be denoted L or
R, as appropriate.

The mapping between the (front, up, left) labels and the (z, y, z) axes
is completely arbitrary. A common choice when working with right-handed
axes is to assign the label front to the positive z-axis, the label left to the positive
x-axis and the label up to the positive y-axis (or in terms of unit basis vectors,
F =k, L =iand U = j). However, it's equally common for +x to be front and
+z to beright (F =i, R =k, U = j). I've also worked with engines in which
the z-axis is oriented vertically. The only real requirement is that you stick to
one convention consistently throughout your engine.

As an example of how intuitive axis names can reduce confusion, consider
Euler angles (pitch, yaw, roll), which are often used to describe an aircraft’s
orientation. It’s not possible to define pitch, yaw, and roll angles in terms of
the (i, j, k) basis vectors because their orientation is arbitrary. However, we
can define pitch, yaw and roll in terms of the (L, U, F) basis vectors, because
their orientations are clearly defined. Specifically,

e pitch is rotation about L or R,
* yaw is rotation about U, and

e 7ol is rotation about F.

4.3.9.2 World Space

World space is a fixed coordinate space, in which the positions, orientations
and scales of all objects in the game world are expressed. This coordinate
space ties all the individual objects together into a cohesive virtual world.

The location of the world-space origin is arbitrary, but it is often placed
near the center of the playable game space to minimize the reduction in floating-
point precision that can occur when (z, y, z) coordinates grow very large.
Likewise, the orientation of the z-, y- and z-axes is arbitrary, although most
of the engines I've encountered use either a y-up or a z-up convention. The
y-up convention was probably an extension of the two-dimensional conven-
tion found in most mathematics textbooks, where the y-axis is shown going
up and the z-axis going to the right. The z-up convention is also common,
because it allows a top-down orthographic view of the game world to look
like a traditional two-dimensional zy-plot.

As an example, let’s say that our aircraft’s left wingtip is at (5, 0, 0) in
model space. (In our game, front vectors correspond to the positive z-axis in
model space with y up, as shown in Figure 4.18.) Now imagine that the jet
is facing down the positive x-axis in world space, with its model-space origin

4.3. Matrices

193

Left
Wingtip:
(S/OIO)M S

(-25,50,3),,

Aigeraft:
(~25,50,8),,

Figure 4.19. A lear jet whose left wingtip is at (5, 0, 0) in model space. If the jet is rotated by
90 degrees about the world-space y-axis, and its model-space origin translated to (—25, 50, 8)
in world space, then its left wingtip would end up at (—25, 50, 3) when expressed in world-space
coordinates.

at some arbitrary location, such as (—25, 50, 8). Because the F vector of the
airplane, which corresponds to +z in model space, is facing down the +x-axis
in world space, we know that the jet has been rotated by 90 degrees about
the world y-axis. So, if the aircraft were sitting at the world-space origin, its
left wingtip would be at (0, 0, — 5) in world space. But because the aircraft’s
origin has been translated to (—25, 50, 8), the final position of the jet’s left
wingtip in world space is (—25, 50, [8 — 5]) = (—25, 50, 3). This is illustrated
in Figure 4.19.

We could of course populate our friendly skies with more than one Lear
jet. In that case, all of their left wingtips would have coordinates of (5, 0, 0)
in model space. But in world space, the left wingtips would have all sorts of
interesting coordinates, depending on the orientation and translation of each
aircraft.

4.3.9.3 View Space

View space (also known as camera space) is a coordinate frame fixed to the cam-
era. The view space origin is placed at the focal point of the camera. Again,
any axis orientation scheme is possible. However, a y-up convention with z
increasing in the direction the camera is facing (left-handed) is typical because
it allows z coordinates to represent depths into the screen. Other engines
and APIs, such as OpenGL, define view space to be right-handed, in which
case the camera faces towards negative z, and z coordinates represent negative
depths. Two possible definitions of view space are illustrated in Figure 4.20.

4.3.10 Change of Basis

In games and computer graphics, it is often quite useful to convert an object’s
position, orientation and scale from one coordinate system into another. We
call this operation a change of basis.

194

4. 3D Math for Games

Right-Handed Left-Handed
Figure 4.20. Left- and right-handed examples of view space, also known as camera space.

4.3.10.1 Coordinate Space Hierarchies

Coordinate frames are relative. That is, if you want to quantify the position,
orientation and scale of a set of axes in three-dimensional space, you must
specify these quantities relative to some other set of axes (otherwise the num-
bers would have no meaning). This implies that coordinate spaces form a hi-
erarchy—every coordinate space is a child of some other coordinate space, and
the other space acts as its parent. World space has no parent; it is at the root
of the coordinate-space tree, and all other coordinate systems are ultimately
specified relative to it, either as direct children or more-distant relatives.

4.3.10.2 Building a Change of Basis Matrix

The matrix that transforms points and directions from any child coordinate
system C to its parent coordinate system P can be written Mc_, p (pronounced
“C to P”). The subscript indicates that this matrix transforms points and di-
rections from child space to parent space. Any child-space position vector P
can be transformed into a parent-space position vector P p as follows:

Pp=PcMc_,p;
(i 0

j 0

MC—>P = i]{CC 0

1

to

iCm’ Z‘Cy Z‘Cz
jCa: jCy jCz
ka kCy kC’z
L tca toy toe

_— o o o

4.3. Matrices 195

In this equation,

* ic is the unit basis vector along the child space z-axis, expressed in
parent-space coordinates;

* jc is the unit basis vector along the child space y-axis, in parent space;

* k¢ is the unit basis vector along the child space z-axis, in parent space;
and

* t¢ is the translation of the child coordinate system relative to parent
space.

This result should not be too surprising. The t¢c vector is just the transla-
tion of the child-space axes relative to parent space, so if the rest of the matrix
were identity, the point (0, 0, 0) in child space would become t¢ in parent
space, just as we’d expect. The i, jo and k¢ unit vectors form the upper 3 x 3
of the matrix, which is a pure rotation matrix because these vectors are of unit
length. We can see this more clearly by considering a simple example, such as
a situation in which child space is rotated by an angle about the z-axis, with
no translation. Recall from Equation (4.6) that the matrix for such a rotation is
given by

cosy siny 0 O
rotate, (r,y) = [Tz Ty T 1] —S(I)nv Cogv (1) 8
0 0 01

But in Figure 4.21, we can see that the coordinates of the ic and jc vectors, ex-
pressed in parent space, areic = [cosy siny 0] andjo = [—siny cosy 0].
When we plug these vectors into our formula for M¢_, p, withke = [0 0 1] ,
it exactly matches the matrix rotate, (r,) from Equation (4.6).

AV

i cos(y)
sin(y) ic
Y
777777777777777 y
—sin(y) cos(y) {>x

Figure 4.21. Change of basis when child axes are rotated by an angle -y relative to parent.

196

4. 3D Math for Games

Scaling the Child Axes

Scaling of the child coordinate system is accomplished by simply scaling the
unit basis vectors appropriately. For example, if child space is scaled up by a
factor of two, then the basis vectors ic, jo and k¢ will be of length 2 instead
of unit length.

43.10.3 Extracting Unit Basis Vectors from a Matrix

The fact that we can build a change of basis matrix out of a translation and
three Cartesian basis vectors gives us another powerful tool: Given any affine
4 x 4 transformation matrix, we can go in the other direction and extract the
child-space basis vectors ic, jo and k¢ from it by simply isolating the ap-
propriate rows of the matrix (or columns if your math library uses column
vectors).

This can be incredibly useful. Let’s say we are given a vehicle’s model-to-
world transform as an affine 4 x4 matrix (a very common representation). This
is really just a change of basis matrix, transforming points in model space into
their equivalents in world space. Let’s further assume that in our game, the
positive z-axis always points in the direction that an object is facing. So, to find
a unit vector representing the vehicle’s facing direction, we can simply extract
k¢ directly from the model-to-world matrix (by grabbing its third row). This
vector will already be normalized and ready to go.

43.10.4 Transforming Coordinate Systems versus Vectors

We’ve said that the matrix M¢_, p transforms points and directions from child
space into parent space. Recall that the fourth row of Mc_, p contains tc,
the translation of the child coordinate axes relative to the world-space axes.
Therefore, another way to visualize the matrix Mc_, p is to imagine it taking
the parent coordinate axes and transforming them into the child axes. This is
the reverse of what happens to points and direction vectors. In other words, if
a matrix transforms vectors from child space to parent space, then it also trans-
forms coordinate axes from parent space to child space. This makes sense when
you think about it—moving a point 20 units to the right with the coordinate
axes fixed is the same as moving the coordinate axes 20 units to the left with
the point fixed. This concept is illustrated in Figure 4.22.

Of course, this is just another point of potential confusion. If you're think-
ing in terms of coordinate axes, then transformations go in one direction, but
if you're thinking in terms of points and vectors, they go in the other direction!
As with many confusing things in life, your best bet is probably to choose a

4.3. Matrices

197

Figure 4.22. Two ways to interpret a transformation matrix. On the left, the point moves against
a fixed set of axes. On the right, the axes move in the opposite direction while the point remains
fixed.

single “canonical” way of thinking about things and stick with it. For exam-
ple, in this book we’ve chosen the following conventions:

* Transformations apply to vectors (not coordinate axes).

¢ Vectors are written as rows (not columns).

Taken together, these two conventions allow us to read sequences of ma-
trix multiplications from left to right and have them make sense (e.g., in the
expression rp = raMa_pMp_cMc_,p, the B’s and C’s in effect “cancel
out,” leaving only rp = r4M 4_, p). Obviously if you start thinking about the
coordinate axes moving around rather than the points and vectors, you either
have to read the transforms from right to left, or flip one of these two conven-
tions around. It doesn’t really matter what conventions you choose as long as
you find them easy to remember and work with.

That said, it’s important to note that certain problems are easier to think
about in terms of vectors being transformed, while others are easier to work
with when you imagine the coordinate axes moving around. Once you get
good at thinking about 3D vector and matrix math, you'll find it pretty easy
to flip back and forth between conventions as needed to suit the problem at
hand.

43.11 Transforming Normal Vectors

A normal vector is a special kind of vector, because in addition to (usually!)
being of unit length, it carries with it the additional requirement that it should
always remain perpendicular to whatever surface or plane it is associated with.
Special care must be taken when transforming a normal vector to ensure that
both its length and perpendicularity properties are maintained.

In general, if a point or (non-normal) vector can be rotated from space A to
space B via the 3 x 3 matrix M 4_, g, then a normal vector n will be transformed

198

4. 3D Math for Games

from space A to space B via the inverse transpose of that matrix, (M}, ;)T. We
will not prove or derive this result here (see [28, Section 3.5] for an excellent
derivation). However, we will observe that if the matrix M 4_, g contains only
uniform scale and no shear, then the angles between all surfaces and vectors
in space B will be the same as they were in space A. In this case, the ma-
trix M4, p will actually work just fine for any vector, normal or non-normal.
However, if M 4_, g contains nonuniform scale or shear (i.e., is non-orthogonal),
then the angles between surfaces and vectors are not preserved when moving
from space A to space B. A vector that was normal to a surface in space A will
not necessarily be perpendicular to that surface in space B. The inverse trans-
pose operation accounts for this distortion, bringing normal vectors back into
perpendicularity with their surfaces even when the transformation involves
nonuniform scale or shear. Another way of looking at this is that the inverse
transpose is required because a surface normal is really a pseudovector rather
than a regular vector (see Section 4.2.4.9).

4.3.12 Storing Matrices in Memory

In the C and C++ languages, a two-dimensional array is often used to store a
matrix. Recall that in C/C++ two-dimensional array syntax, the first subscript
is the row and the second is the column, and the column index varies fastest
as you move through memory sequentially.

float m[4]([4]; // [row][col], col varies fastest

// "flatten" the array to demonstrate ordering
float* pm = &m[0][0];

ASSERT (&pm[0] == &m[0][0]);
ASSERT (&pm[1l] == &m[0][1]);
ASSERT (&pm[2] == &m[0][2]);
// etc.

We have two choices when storing a matrix in a two-dimensional C/C++
array. We can either

1. store the vectors (ic, jo, ke, teo) contiguously in memory (i.e., each row
contains a single vector), or

2. store the vectors strided in memory (i.e., each column contains one vector).

The benefit of approach (1) is that we can address any one of the four
vectors by simply indexing into the matrix and interpreting the four con-
tiguous values we find there as a 4-element vector. This layout also has the

4.3. Matrices

199

benefit of matching up exactly with row vector matrix equations (which is an-
other reason why I've selected row vector notation for this book). Approach
(2) is sometimes necessary when doing fast matrix-vector multiplies using a
vector-enabled (SIMD) microprocessor, as we’ll see later in this chapter. In
most game engines I've personally encountered, matrices are stored using ap-
proach (1), with the vectors in the rows of the two-dimensional C/C++ array.
This is shown below:

float M[4][4];

M[O] [0]=ix; M[O][l]=1iy; M[O][2]=iz; M[O0][3]=0.0f;
M[1][0]1=3x; M[1][1]1=3y; MI[1][2]=3jz; M[1][3]1=0.0f;
M[2][0]=kx; M[2][1l]l=ky; M[2][2]=kz; M[2][3]=0.0f;
M[3][0]=tx; M[3][1l]=ty; M[3][2]=tz; M[3][3]=1.0f;

The matrix looks like this when viewed in a debugger:

M[][]
[0]
1xX
iy
iz
0.0000

w N = O

[1]

Ix

Jy

jz
0.0000

w N = O

[2]

] kx
1 ky
] kz
1

[
[
[
[0.0000

w N P O

[0] tx
[1] ty
[2] tz
[3] 1.0000

One easy way to determine which layout your engine uses is to find a
function that builds a 4 x 4 translation matrix. (Every good 3D math library
provides such a function.) You can then inspect the source code to see where
the elements of the t vector are being stored. If you don’t have access to the
source code of your math library (which is pretty rare in the game industry),
you can always call the function with an easy-to-recognize translation like

200

4. 3D Math for Games

(4, 3, 2), and then inspect the resulting matrix. If row 3 contains the values
4.0f,3.0f,2.0f,1.0f, then the vectors are in the rows, otherwise the vec-
tors are in the columns.

4.4 Quaternions

We've seen that a 3 x 3 matrix can be used to represent an arbitrary rotation
in three dimensions. However, a matrix is not always an ideal representation
of a rotation, for a number of reasons:

1. We need nine floating-point values to represent a rotation, which seems
excessive considering that we only have three degrees of freedom—
pitch, yaw and roll.

2. Rotating a vector requires a vector-matrix multiplication, which involves
three dot products, or a total of nine multiplications and six additions.
We would like to find a rotational representation that is less expensive
to calculate, if possible.

3. In games and computer graphics, it’s often important to be able to find
rotations that are some percentage of the way between two known rota-
tions. For example, if we are to smoothly animate a camera from some
starting orientation A to some final orientation B over the course of a
few seconds, we need to be able to find lots of intermediate rotations
between A and B over the course of the animation. It turns out to be dif-
ficult to do this when the A and B orientations are expressed as matrices.

Thankfully, there is a rotational representation that overcomes these three
problems. It is a mathematical object known as a quaternion. A quaternion
looks a lot like a four-dimensional vector, but it behaves quite differently. We
usually write quaternions using non-italic, non-boldface type, like this: q =
[Qz qy 4z Qw] .

Quaternions were developed by Sir William Rowan Hamilton in 1843 as
an extension to the complex numbers. (Specifically, a quaternion may be
interpreted as a four-dimensional complex number, with a single real axis
and three imaginary axes represented by the imaginary numbers ¢, j and
k. As such, a quaternion can be written in “complex form” as follows: q =
19z + jgy + kq. + ¢w.) Quaternions were first used to solve problems in the
area of mechanics. Technically speaking, a quaternion obeys a set of rules
known as a four-dimensional normed division algebra over the real numbers.
Thankfully, we won’t need to understand the details of these rather esoteric

44. Quaternions

201

algebraic rules. For our purposes, it will suffice to know that the unit-length
quaternions (i.e., all quaternions obeying the constraint ¢2 + ¢ + ¢ + ¢, = 1)
represent three-dimensional rotations.

There are a lot of great papers, web pages and presentations on quater-
nions available on the web for further reading. Here’s one of my favorites:
http://graphics.ucsd.edu/courses/csel69_w05/CSE169_04.ppt.

4.4.1 Unit Quaternions as 3D Rotations

A unit quaternion can be visualized as a three-dimensional vector plus a fourth
scalar coordinate. The vector part qy is the unit axis of rotation, scaled by the
sine of the half-angle of the rotation. The scalar part ¢g is the cosine of the
half-angle. So the unit quaternion q can be written as follows:

q=[av qs]
[0]’

=[asing cos?
where a is a unit vector along the axis of rotation, and 6 is the angle of rota-
tion. The direction of the rotation follows the right-hand rule, so if your thumb
points in the direction of a, positive rotations will be in the direction of your
curved fingers.
Of course, we can also write q as a simple four-element vector:

=t 4 @ qu],where
Go = qv, = ay sin §,
Gy = qv, =y sin%,
4z = qv, = Az Sing,
qw = 4s = COS%-

A unit quaternion is very much like an axis+angle representation of a ro-
tation (i.e., a four-element vector of the form [a 6]). However, quaternions
are more convenient mathematically than their axis+angle counterparts, as we
shall see below.

4.4.2 Quaternion Operations

Quaternions support some of the familiar operations from vector algebra,
such as magnitude and vector addition. However, we must remember that
the sum of two unit quaternions does not represent a 3D rotation, because
such a quaternion would not be of unit length. As a result, you won't see
any quaternion sums in a game engine, unless they are scaled in some way to
preserve the unit length requirement.

202

4. 3D Math for Games

4.4.2.1 Quaternion Multiplication

One of the most important operations we will perform on quaternions is that
of multiplication. Given two quaternions p and q representing two rotations
P and Q, respectively, the product pq represents the composite rotation (i.e.,
rotation Q followed by rotation P). There are actually quite a few different
kinds of quaternion multiplication, but we'll restrict this discussion to the va-
riety used in conjunction with 3D rotations, namely the Grassman product.
Using this definition, the product pq is defined as follows:

pa = [(psav + qspv +Pv xav) (psqs —Pv - qv)].

Notice how the Grassman product is defined in terms of a vector part, which
ends up in the z, y and z components of the resultant quaternion, and a scalar
part, which ends up in the w component.

4.4.2.2 Conjugate and Inverse

The inverse of a quaternion q is denoted q~! and is defined as a quaternion

that, when multiplied by the original, yields the scalar 1 (i.e., qq~! = 0i+ 0j +
Ok + 1). The quaternion [0 0 0 1] represents a zero rotation (which makes
sense since sin(0) = 0 for the first three components, and cos(0) = 1 for the
last component).

In order to calculate the inverse of a quaternion, we must first define a
quantity known as the conjugate. This is usually denoted q* and it is defined
as follows:

9" =[-av gs].

In other words, we negate the vector part but leave the scalar part unchanged.
Given this definition of the quaternion conjugate, the inverse quaternion
q~! is defined as follows:

*

-1 q
q = .
|af?

Our quaternions are always of unit length (i.e., |q| = 1), because they represent
3D rotations. So, for our purposes, the inverse and the conjugate are identical:

9 '=q"=[-av ¢s] when |[q=1

This fact is incredibly useful, because it means we can always avoid doing
the (relatively expensive) division by the squared magnitude when inverting
a quaternion, as long as we know a priori that the quaternion is normalized.

44. Quaternions

203

This also means that inverting a quaternion is generally much faster than in-
verting a 3 x 3 matrix—a fact that you may be able to leverage in some situa-
tions when optimizing your engine.

Conjugate and Inverse of a Product

The conjugate of a quaternion product (pq) is equal to the reverse product of
the conjugates of the individual quaternions:

(pa)" =q*p".

Likewise, the inverse of a quaternion product is equal to the reverse product
of the inverses of the individual quaternions:

(pq) ' =q 'p " (4.8)

This is analogous to the reversal that occurs when transposing or inverting
matrix products.

443 Rotating Vectors with Quaternions

How can we apply a quaternion rotation to a vector? The first step is to rewrite
the vector in quaternion form. A vector is a sum involving the unit basis vec-
tors i, j and k. A quaternion is a sum involving i, j and k, but with a fourth
scalar term as well. So it makes sense that a vector can be written as a quater-
nion with its scalar term ¢g equal to zero. Given the vector v, we can write a
corresponding quaternionv = [v 0] = [v, v, wv. 0].

In order to rotate a vector v by a quaternion q, we premultiply the vector
(written in its quaternion form v) by q and then post-multiply it by the inverse
quaternion q~!. Therefore, the rotated vector v’ can be found as follows:

v/ = rotate(q,v) = quq .

This is equivalent to using the quaternion conjugate, because our quaternions
are always unit length:

v/ = rotate(q,v) = quq™. 4.9)

The rotated vector v’ is obtained by simply extracting it from its quaternion
form v'.

Quaternion multiplication can be useful in all sorts of situations in real
games. For example, let’s say that we want to find a unit vector describ-
ing the direction in which an aircraft is flying. We’ll further assume that in

204

4. 3D Math for Games

our game, the positive z-axis always points toward the front of an object by
convention. So the forward unit vector of any object in model space is always
Fy = [0 0 1] by definition. To transform this vector into world space, we
can simply take our aircraft’s orientation quaternion q and use it with Equa-
tion (4.9) to rotate our model-space vector F, into its world-space equivalent
Fy (after converting these vectors into quaternion form, of course):

FW:qFMq*I:q[O 0 1 O]qfl.

4.4.3.1 Quaternion Concatenation

Rotations can be concatenated in exactly the same way that matrix-based trans-
formations can, by multiplying the quaternions together. For example, con-
sider three distinct rotations, represented by the quaternions q;, q2 and qs,
with matrix equivalents R;, Ry and R3. We want to apply rotation 1 first,
followed by rotation 2 and finally rotation 3. The composite rotation matrix
Ryt can be found and applied to a vector v as follows:

Riet = R1R2R3;
V/ = VR1R2R3

= VRnet-

Likewise, the composite rotation quaternion gnet can be found and applied to
vector v (in its quaternion form, v) as follows:

Onet = 939291,
v/ = q3q2q1 va; 'z 'az

-1
= Qnet V Gnet -

Notice how the quaternion product must be performed in an order opposite
to that in which the rotations are applied (q3q2q1). This is because quater-
nion rotations always multiply on both sides of the vector, with the uninverted
quaternions on the left and the inverted quaternions on the right. As we saw
in Equation (4.8), the inverse of a quaternion product is the reverse product of
the individual inverses, so the uninverted quaternions read right-to-left while
the inverted quaternions read left-to-right.

4.4.4 Quaternion-Matrix Equivalence

We can convert any 3D rotation freely between a 3 x 3 matrix representation R
and a quaternion representation q. If weletq = [qv ¢s] = [gve qvy vz 4s]

44. Quaternions

205

= [t y 2z w],then we can find R as follows:

1—2y% — 222 2xy + 2zw 2xz — 2yw
R=| 2zy—2zw 1—22% — 222 2yz + 2xw
2wz + 2yw 2yz — 2xw 1 —2x% — 2y?

Likewise, given R, we can find q as follows (where q[0] = qv,, q[1] =
qvy,9[2] =qv,and g[3] =gg). This code assumes that we are using row vec-
tors in C/C++ (i.e., that the rows of matrix correspond to the rows of the ma-
trix R shown above). The code was adapted from a Gamasutra article by Nick
Bobic, published on July 5, 1998, which is available here: http://www.gama
sutra.com/view/feature/3278/rotating_objects_using_quaternions.php. For
a discussion of some even faster methods for converting a matrix to a quater-
nion, leveraging various assumptions about the nature of the matrix, see
http:/ /www.euclideanspace.com/maths/geometry/rotations/conversions/
matrixToQuaternion/index.htm.

vold matrixToQuaternion (
const float RI[3]1[31,
float ql/*4x/1)

float trace = R[0][0] + R[1][1] + R[2][2];

// check the diagonal

if (trace > 0.0f)

{
float s = sqgrt(trace + 1.0f);
ql3] = s = 0.5f;

float t = 0.5f / s;

ql0] = (R[2][1] - R[1][2]) =* t;
all] = (R[O][2] - RI[2][0]) =* t;
ql2] = (R[1][0] - RIO][1]) * t;
}
else

{
// diagonal is negative
int 1 = 0;
if (R[11[1] > R[O][O0]) i = 1;
if (R[2]1([2] > R[i][i]) 1

static const int NEXT[3] = {1, 2, 0};
int § = NEXT[i];
int k = NEXTI[]J];

float s = sqrt ((R[i][7]

206

4. 3D Math for Games

+ 1.0f);
qli] = s = 0.5f;
float t;
if (s '= 0.0) t 0.5f / s;
else t = s;
ql3] = (R[k]I[J] - RIJI[k]) * t;
qljl = (R[JI[i] + RI11[3]) = t;
gqlk] = (R[k][1i] + RI[i][k]) =* t;

}

Let’s pause for a moment to consider notational conventions. In this book,
we write our quaternions like this: [z y z w]. This differs from the [w z y 2]
convention found in many academic papers on quaternions as an extension of
the complex numbers. Our convention arises from an effort to be consistent
with the common practice of writing homogeneous vectors as [z y 2z 1]
(with the w = 1 at the end). The academic convention arises from the par-
allels between quaternions and complex numbers. Regular two-dimensional
complex numbers are typically written in the form ¢ = a + jb, and the cor-
responding quaternion notation is ¢ = w + iz + jy + kz. So be careful out
there—make sure you know which convention is being used before you dive
into a paper head first!

4.4.5 Rotational Linear Interpolation

Rotational interpolation has many applications in the animation, dynamics
and camera systems of a game engine. With the help of quaternions, rotations
can be easily interpolated just as vectors and points can.

The easiest and least computationally intensive approach is to perform a
four-dimensional vector LERP on the quaternions you wish to interpolate.
Given two quaternions q4 and qp representing rotations A and B, we can find
an intermediate rotation qrprp that is 8 percent of the way from A to B as
follows:

(1—8)qa + Bas
|(1 - B)aa + Bas]
T

qiere = LERP(q4,qp,5) =

(1
(1
(1
(1

5)QAz + BQBx
B)QAU + Bqu
ﬁ)QAz + BqB.
B)qaw + BaBw

= normalize

44. Quaternions

207

Qs (B=1)

qeerr = LERP(q4, g, 0.4)

q4 (8=0)

Figure 4.23. Linear interpolation (LERP) between two quaternions q4 and qp.

Notice that the resultant interpolated quaternion had to be renormalized.
This is necessary because the LERP operation does not preserve a vector’s
length in general.

Geometrically, querp = LERP(q4, q5, 5) is the quaternion whose orienta-
tion lies 5 percent of the way from orientation A to orientation B, as shown
(in two dimensions for clarity) in Figure 4.23. Mathematically, the LERP oper-
ation results in a weighed average of the two quaternions, with weights (1 —)
and S (notice that these two weights sum to 1).

4.4.5.1 Spherical Linear Interpolation

The problem with the LERP operation is that it does not take account of the
fact that quaternions are really points on a four-dimensional hypersphere. A
LERP effectively interpolates along a chord of the hypersphere, rather than
along the surface of the hypersphere itself. This leads to rotation animations
that do not have a constant angular speed when the parameter /3 is changing
at a constant rate. The rotation will appear slower at the end points and faster
in the middle of the animation.

To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short. The SLERP operation uses
sines and cosines to interpolate along a great circle of the 4D hypersphere,
rather than along a chord, as shown in Figure 4.24. This results in a constant
angular speed when 3 varies at a constant rate.

The formula for SLERP is similar to the LERP formula, but the weights
(1 — B) and g are replaced with weights w,, and w, involving sines of the
angle between the two quaternions.

SLERP(p, q, 3) = w,p + wyq,

208

4. 3D Math for Games

q(B=1)

qeere = LERP(qa4, qs, 0.4)
qscere = SLERP(q4, gs, 0.4)

Figure 4.24. Spherical linear interpolation along a great circle arc of a 4D hypersphere.

where
w sin(1 — 3)0
P sinf
w — sin 560
17 sing

The cosine of the angle between any two unit-length quaternions can be
found by taking their four-dimensional dot product. Once we know cos), we
can calculate the angle § and the various sines we need quite easily:

cosf = P 9= Pzqx +pry + P29: + Pwuw;
6 =cos '(p-q).

4.4.5.2 To SLERP or Not to SLERP (That’s Still the Question)

The jury is still out on whether or not to use SLERP in a game engine. Jonathan
Blow wrote a great article positing that SLERP is too expensive, and LERP’s
quality is not really that bad—therefore, he suggests, we should understand
SLERP but avoid it in our game engines (see http:/ /number-none.com/pro
duct/Understanding%20Slerp,%20Then%20Not%20Using%20It/index.html).
On the other hand, some of my colleagues at Naughty Dog have found that
a good SLERP implementation performs nearly as well as LERP. (For exam-
ple, on the PS3’s SPUs, Naughty Dog’s Ice team’s implementation of SLERP
takes 20 cycles per joint, while its LERP implementation takes 16.25 cycles per
joint.) Therefore, I'd personally recommend that you profile your SLERP and
LERP implementations before making any decisions. If the performance hit
for SLERP isn’t unacceptable, I say go for it, because it may result in slightly

4.5. Comparison of Rotational Representations

209

better-looking animations. But if your SLERP is slow (and you cannot speed
it up, or you just don’t have the time to do so), then LERP is usually good
enough for most purposes.

4.5 Comparison of Rotational Representations

We’ve seen that rotations can be represented in quite a few different ways.
This section summarizes the most common rotational representations and
outlines their pros and cons. No one representation is ideal in all situations.
Using the information in this section, you should be able to select the best
representation for a particular application.

4.5.1 Euler Angles

We briefly explored Euler angles in Section 4.3.9.1. A rotation represented via
Euler angles consists of three scalar values: yaw, pitch and roll. These quanti-
ties are sometimes represented by a 3D vector [0y 0p 0g].

The benefits of this representation are its simplicity, its small size (three
floating-point numbers) and its intuitive nature—yaw, pitch and roll are easy
to visualize. You can also easily interpolate simple rotations about a single
axis. For example, it’s trivial to find intermediate rotations between two dis-
tinct yaw angles by linearly interpolating the scalar 6y. However, Euler angles
cannot be interpolated easily when the rotation is about an arbitrarily oriented
axis.

In addition, Euler angles are prone to a condition known as gimbal lock.
This occurs when a 90-degree rotation causes one of the three principal axes
to “collapse” onto another principal axis. For example, if you rotate by 90
degrees about the z-axis, the y-axis collapses onto the z-axis. This prevents
any further rotations about the original y-axis, because rotations about y and
z have effectively become equivalent.

Another problem with Euler angles is that the order in which the rotations
are performed around each axis matters. The order could be PYR, YPR, RYP
and so on, and each ordering may produce a different composite rotation.
No one standard rotation order exists for Euler angles across all disciplines
(although certain disciplines do follow specific conventions). So the rotation
angles [0y 0p 0g] do not uniquely define a particular rotation—you need
to know the rotation order to interpret these numbers properly.

A final problem with Euler angles is that they depend upon the mapping
from the z-, y- and z-axes onto the natural front, left/right and up directions
for the object being rotated. For example, yaw is always defined as rotation

210

4. 3D Math for Games

about the up axis, but without additional information we cannot tell whether
this corresponds to a rotation about z, y or z.

4.5.2 3 x 3 Matrices

A 3 x 3 matrix is a convenient and effective rotational representation for a
number of reasons. It does not suffer from gimbal lock, and it can represent
arbitrary rotations uniquely. Rotations can be applied to points and vectors
in a straightforward manner via matrix multiplication (i.e., a series of dot
products). Most CPUs and all GPUs now have built-in support for hardware-
accelerated dot products and matrix multiplication. Rotations can also be re-
versed by finding an inverse matrix, which for a pure rotation matrix is the
same thing as finding the transpose—a trivial operation. And 4 x 4 matrices
offer a way to represent arbitrary affine transformations—rotations, transla-
tions and scaling—in a totally consistent way:.

However, rotation matrices are not particularly intuitive. Looking at a big
table of numbers doesn’t help one picture the corresponding transformation
in three-dimensional space. Also, rotation matrices are not easily interpolated.
Finally, a rotation matrix takes up a lot of storage (nine floating-point num-
bers) relative to Euler angles (three floats).

453 Axis + Angle

We can represent rotations as a unit vector, defining the axis of rotation plus
a scalar for the angle of rotation. This is known as an axis+angle represen-
tation, and it is sometimes denoted by the four-dimensional vector [a 6} =
[agﬂ ay a 9] , where a is the axis of rotation and ¢ the angle in radians. In a
right-handed coordinate system, the direction of a positive rotation is defined
by the right-hand rule, while in a left-handed system, we use the left-hand
rule instead.

The benefits of the axis+angle representation are that it is reasonably in-
tuitive and also compact. (It only requires four floating-point numbers, as
opposed to the nine required for a 3 x 3 matrix.)

One important limitation of the axis+angle representation is that rotations
cannot be easily interpolated. Also, rotations in this format cannot be ap-
plied to points and vectors in a straightforward way—one needs to convert
the axis+angle representation into a matrix or quaternion first.

4.5.4 Quaternions

As we've seen, a unit-length quaternion can represent 3D rotations in a man-
ner analogous to the axis+angle representation. The primary difference be-

4.5. Comparison of Rotational Representations

211

tween the two representations is that a quaternion’s axis of rotation is scaled
by the sine of the half-angle of rotation, and instead of storing the angle in the
fourth component of the vector, we store the cosine of the half-angle.

The quaternion formulation provides two immense benefits over the axis
+angle representation. First, it permits rotations to be concatenated and ap-
plied directly to points and vectors via quaternion multiplication. Second, it
permits rotations to be easily interpolated via simple LERP or SLERP oper-
ations. Its small size (four floating-point numbers) is also a benefit over the
matrix formulation.

455 SQT Transformations

By itself, a quaternion can only represent a rotation, whereas a 4 x 4 matrix can
represent an arbitrary affine transformation (rotation, translation and scale).
When a quaternion is combined with a translation vector and a scale factor (ei-
ther a scalar for uniform scaling or a vector for nonuniform scaling), then we
have a viable alternative to the 4 x 4 matrix representation of affine transfor-
mations. We sometimes call this an SQT transform, because it contains a scale
factor, a quaternion for rotation and a translation vector.

SQT=[s q t] (uniform scale s),
or
SQT=[s q t] (nonuniform scale vector s).

SQT transforms are widely used in computer animation because of their
smaller size (eight floats for uniform scale, or ten floats for nonuniform scale,
as opposed to the 12 floating-point numbers needed for a 4 x 3 matrix) and
their ability to be easily interpolated. The translation vector and scale factor
are interpolated via LERP, and the quaternion can be interpolated with either
LERP or SLERP.

4.5.6 Dual Quaternions

A rigid transformation is a transformation involving a rotation and a transla-
tion—a “corkscrew” motion. Such transformations are prevalent in animation
and robotics. A rigid transformation can be represented using a mathematical
object known as a dual quaternion. The dual quaternion representation offers a
number of benefits over the typical vector-quaternion representation. The key
benefit is that linear interpolation blending can be performed in a constant-
speed, shortest-path, coordinate-invariant manner, similar to using LERP for
translation vectors and SLERP for rotational quatnerions (see Section 4.4.5.1),

212

4. 3D Math for Games

but in a way that is easily generalizable to blends involving three or more
transforms.

A dual quaternion is like an ordinary quaternion, except that its four com-
ponents are dual numbers instead of regular real-valued numbers. A dual num-
ber can be written as the sum of a non-dual part and a dual part as follows:
G = a + €b. Here € is a magical number called the dual unit, defined in such
a way that e = 0 (yet without ¢ itself being zero). This is analogous to the
imaginary number j = \/—1 used when writing a complex number as the sum
of areal and an imaginary part: ¢ = a + jb.

Because each dual number can be represented by two real numbers (the
non-dual and dual parts, a and b), a dual quaternion can be represented by
an eight-element vector. It can also be represented as the sum of two ordinary
quaternions, where the second one is multiplied by the dual unit, as follows:
4= qa +&qs-

A full discussion of dual numbers and dual quaternions is beyond our
scope here. However, the following excellent paper outlines the theory and
practice of using dual quaternions to represent rigid transformations: https://
www.cs.ted.ie/publications/tech-reports /reports.06 / TCD-CS-2006-46.pdf.
Note that in this paper, a dual number is written in the form & = ag + €a.,
whereas I have used a + €b above to underscore the similarity between dual
numbers and complex numbers.!

4.5.7 Rotations and Degrees of Freedom

The term “degrees of freedom” (or DOF for short) refers to the number of mu-
tually independent ways in which an object’s physical state (position and ori-
entation) can change. You may have encountered the phrase “six degrees of
freedom” in fields such as mechanics, robotics and aeronautics. This refers
to the fact that a three-dimensional object (whose motion is not artificially
constrained) has three degrees of freedom in its translation (along the -, y-
and z-axes) and three degrees of freedom in its rotation (about the z-, y- and
z-axes), for a total of six degrees of freedom.

The DOF concept will help us to understand how different rotational rep-
resentations can employ different numbers of floating-point parameters, yet
all specify rotations with only three degrees of freedom. For example, Euler
angles require three floats, but axis+angle and quaternion representations use

lPersonally I would have prefered the symbol a1 over ag, so that a dual number would be
written @ = (1)a1 + (¢)a.. Just as when we plot a complex number in the complex plane, we can
think of the real unit as a “basis vector” along the real axis, and the dual unit € as a “basis vector”
along the dual axis.

4.6. Other Useful Mathematical Objects

213

four floats, and a 3 x 3 matrix takes up nine floats. How can these representa-
tions all describe 3-DOF rotations?

The answer lies in constraints. All 3D rotational representations employ
three or more floating-point parameters, but some representations also have
one or more constraints on those parameters. The constraints indicate that the
parameters are not independent—a change to one parameter induces changes
to the other parameters in order to maintain the validity of the constraint(s).
If we subtract the number of constraints from the number of floating-point
parameters, we arrive at the number of degrees of freedom—and this number
should always be three for a 3D rotation:

N DOF — N, parameters — N, constraints - (410)

The following list shows Equation (4.10) in action for each of the rotational
representations we’ve encountered in this book.

® Euler Angles. 3 parameters — 0 constraints = 3 DOF.
* Axis+Angle. 4 parameters — 1 constraint = 3 DOF.
Constraint: Axis is constrained to be unit length.
* Quaternion. 4 parameters — 1 constraint = 3 DOF.
Constraint: Quaternion is constrained to be unit length.
* 3 X 3 Matrix. 9 parameters — 6 constraints = 3 DOF.
Constraints: All three rows and all three columns must be of unit length
(when treated as three-element vectors).

4.6 Other Useful Mathematical Objects

As game engineers, we will encounter a host of other mathematical objects
in addition to points, vectors, matrices and quaternions. This section briefly
outlines the most common of these.

4.6.1 Lines, Rays and Line Segments

An infinite line can be represented by a point P plus a unit vector u in the
direction of the line. A parametric equation of a line traces out every possible
point P along the line by starting at the initial point Py, and moving an arbi-
trary distance ¢ along the direction of the unit vector v. The infinitely large set
of points P becomes a vector function of the scalar parameter ¢:

P(t) =Py +tu, where —oo <t < 0. (4.11)

This is depicted in Figure 4.25.

214

4. 3D Math for Games

u o -
12/7\ t Po W 3
S t=1 */'\ t=2
<Y t=0 t=1
t=-1 t=0

Figure 4.25. Parametric equation of a line. Figure 4.26. Parametric equation of a ray.

A ray is a line that extends to infinity in only one direction. This is easily
expressed as P(¢) with the constraint ¢ > 0, as shown in Figure 4.26.

A line segment is bounded at both ends by Py and P;. It too can be repre-
sented by P(?), in either one of the following two ways (where L = P; — Py,
L = |L| is the length of the line segment, and u = (1/L)L is a unit vector in
the direction of L):

1. P(t)=Py+tu where0 <t <L, or
2. P{t)=Po+tL, where0 <t <1.

The latter format, depicted in Figure 4.27, is particularly convenient be-
cause the parameter ¢ is normalized; in other words, ¢ always goes from zero
to one, no matter which particular line segment we are dealing with. This
means we do not have to store the constraint L in a separate floating-point
parameter; it is already encoded in the vector L = Lu (which we have to
store anyway).

Figure 4.27. Parametric equation of a line segment, with normalized parameter ¢.

4.6.2 Spheres

Spheres are ubiquitous in game engine programming. A sphere is typically
defined as a center point C plus a radius r, as shown in Figure 4.28. This packs
nicely into a four-element vector, [C’m c, C, 7‘] . As we’ll see below when
we discuss SIMD vector processing, there are distinct benefits to being able to
pack data into a vector containing four 32-bit floats (i.e., a 128-bit package).

4.6. Other Useful Mathematical Objects

215

T

Figure 4.28. Point-radius representation of a sphere.

4.6.3 Planes

A plane is a 2D surface in 3D space. As you may recall from high-school alge-
bra, the equation of a plane is often written as follows:

Az + By+Cz+ D =0.

This equation is satisfied only for the locus of points P = [z y z] that lie
on the plane.

Planes can be represented by a point Py and a unit vector n that is nor-
mal to the plane. This is sometimes called point-normal form, as depicted in
Figure 4.29.

It’s interesting to note that when the parameters A, B and C from the tra-
ditional plane equation are interpreted as a 3D vector, that vector lies in the
direction of the plane normal. If the vector [A B (] is normalized to unit
length, then the normalized vector [a b c} = n, and the normalized param-
eter d = D/ A? + B? + C? is just the distance from the plane to the origin.
The sign of d is positive if the plane’s normal vector n is pointing toward the
origin (i.e., the origin is on the “front” side of the plane) and negative if the
normal is pointing away from the origin (i.e., the origin is “behind” the plane).

Another way of looking at this is that the plane equation and the point-
normal form are really just two ways of writing the same equation. Imagine
testing whether or not an arbitrary point P = [z y z] lies on the plane. To
do this, we find the signed distance from point P to the origin along the nor-
maln = [a b ¢, and if this signed distance is equal to the signed distance
d = —n - Pg from the plane from the origin, then P must lie on the plane. So

Figure 4.29. A plane
in point-normal form.

216 4. 3D Math for Games

let’s set them equal and expand some terms:

(signed distance P to origin) = (signed distance plane to origin)
n-P=n-Pgy
n-P-n-Pyp=0
ax+by+cz—mn-Pyg=0
ar+by+cz+d=0. (4.12)

Equation (4.12) only holds when the point P lies on the plane. But what
happens when the point P does not lie on the plane? In this case, the left-hand
side of the plane equation (ax + by + cz, which is equal to n - P) tells how
far “off” the point is from being on the plane. This expression calculates the
difference between the distance from P to the origin and the distance from the
plane to the origin. In other words, the left-hand side of Equation (4.12) gives
us the perpendicular distance i between the point and the plane! This is just
another way to write Equation (4.2) from Section 4.2.4.7.

h=(P —Po) n;
h=ax+by+cz+d. (4.13)

A plane can actually be packed into a four-element vector, much like a
sphere can. To do so, we observe that to describe a plane uniquely, we need
only the normal vectorn = [a b ¢] and the distance from the origin d. The
four-element vector L = [n d] =[a b ¢ d]isacompactand convenient
way to represent and store a plane in memory. Note that when P is written in
homogeneous coordinates with w = 1, the equation (L - P) = 0 is yet another
way of writing (n- P) = —d. These equations are satisfied for all points P that
lie on the plane L.

Planes defined in four-element vector form can be easily transformed from
one coordinate space to another. Given a matrix M 4_, p that transforms points
and (non-normal) vectors from space A to space B, we already know that to
transform a normal vector such as the plane’s n vector, we need to use the in-
verse transpose of that matrix, (M, 5)T. So it shouldn’t be a big surprise to
learn that applying the inverse transpose of a matrix to a four-element plane
vector L will, in fact, correctly transform that plane from space A to space B.
We won't derive or prove this result any further here, but a thorough expla-
nation of why this little “trick” works is provided in Section 4.2.3 of [28].

4.6.4 Axis-Aligned Bounding Boxes (AABB)

An axis-aligned bounding box (AABB) is a 3D cuboid whose six rectangular
faces are aligned with a particular coordinate frame’s mutually orthogonal

4.6. Other Useful Mathematical Objects

217

axes. As such, an AABB can be represented by a six-element vector containing
the minimum and maximum coordinates along each of the 3 principal axes,
[Imina Ymin,s Zmins Tmax; Ymax, Zmax]/ or two pOthS Pmin and Pmax'

This simple representation allows for a particularly convenient and inex-
pensive method of testing whether a point P is inside or outside any given
AABB. We simply test if all of the following conditions are true:

P, > 2min and P, < Ty and
Py > ymin and P, < ymax and
Pz 2 Zmin and Pz < Zmax-

Because intersection tests are so speedy, AABBs are often used as an “early
out” collision check; if the AABBs of two objects do not intersect, then there is
no need to do a more detailed (and more expensive) collision test.

4.6.5 Oriented Bounding Boxes (OBB)

An oriented bounding box (OBB) is a cuboid that has been oriented so as to
align in some logical way with the object it bounds. Usually an OBB aligns
with the local-space axes of the object. Hence, it acts like an AABB in local
space, although it may not necessarily align with the world-space axes.

Various techniques exist for testing whether or not a point lies within an
OBB, but one common approach is to transform the point into the OBB’s
“aligned” coordinate system and then use an AABB intersection test as pre-
sented above.

4.6.6 Frusta

As shown in Figure 4.30, a frustum is a group of six planes that define a trun-
cated pyramid shape. Frusta are commonplace in 3D rendering because they
conveniently define the viewable region of the 3D world when rendered via
a perspective projection from the point of view of a virtual camera. Four of
the planes bound the edges of the screen space, while the other two planes
represent the the near and far clipping planes (i.e., they define the minimum
and maximum z coordinates possible for any visible point).

One convenient representation of a frustum is as an array of six planes,
each of which is represented in point-normal form (i.e., one point and one
normal vector per plane).

Testing whether a point lies inside a frustum is a bit involved, but the basic
idea is to use dot products to determine whether the point lies on the front or
back side of each plane. If it lies inside all six planes, it is inside the frustum.

Bottom

Figure 4.30. A frustum.

218

4. 3D Math for Games

A helpful trick is to transform the world-space point being tested by apply-
ing the camera’s perspective projection to it. This takes the point from world
space into a space known as homogeneous clip space. In this space, the frustum
is just an axis-aligned cuboid (AABB). This permits much simpler in/out tests
to be performed.

4.6.7 Convex Polyhedral Regions

A convex polyhedral region is defined by an arbitrary set of planes, all with nor-
mals pointing inward (or outward). The test for whether a point lies inside
or outside the volume defined by the planes is relatively straightforward; it
is similar to a frustum test, but with possibly more planes. Convex regions
are very useful for implementing arbitrarily shaped trigger regions in games.
Many engines employ this technique; for example, the Quake engine’s ubig-
uitous brushes are just volumes bounded by planes in exactly this way.

4.7 Hardware-Accelerated SIMD Math

SIMD stands for “single instruction multiple data.” This refers to the ability of
most modern microprocessors to perform a single mathematical operation on
multiple data items in parallel, using a single machine instruction. For exam-
ple, the CPU might multiply four pairs of floating-point numbers in parallel
with a single instruction. SIMD is widely used in game engine math libraries,
because it permits common vector operations such as dot products and matrix
multiplication to be performed extremely rapidly.

Intel first introduced MMX instructions with their Pentium line of CPUs
in 1994. These instructions permitted SIMD calculations to be performed on
eight 8-bit integers, four 16-bit integers, or two 32-bit integers packed into
special 64-bit MMX registers. Intel followed this up with various revisions
of an extended instruction set called Streaming SIMD Extensions, or SSE, the
first version of which appeared in the Pentium III processor. The SSE instruc-
tion set utilizes 128-bit registers that can contain integer or IEEE floating-point
data.

The SSE mode most commonly used by game engines is called packed 32-
bit floating-point mode. In this mode, four 32-bit f£1oat values are packed into
a single 128-bit register; four operations such as additions or multiplications
are performed in parallel on four pairs of floats using a single instruction. This
is just what the doctor ordered when multiplying a four-element vector by a
4 x 4 matrix.

47. Hardware-Accelerated SIMD Math 219

k— 32 bits —k— 32 bits | 32 bits | 32 bits —

L = [v : v |

Figure 4.31. The four components of an SSE register in 32-bit floating-point mode.

4.7.1 SSE Registers

In packed 32-bit floating-point mode, each 128-bit SSE register contains four
32-bit floats. The individual floats within an SSE register are conveniently
referred toas [z y z w],justasthey would be when doing vector/matrix
math in homogeneous coordinates on paper (see Figure 4.31). To see how the
SSE registers work, here’s an example of a SIMD instruction:

addps xmm0, xmml

The addps instruction adds the four floats in the 128-bit XMMO register with
the four floats in the XMM1 register, and stores the four results back into
XMMO. Put another way,

xmmO0.x = xmm0.x + xmml.x;
xmm0.y = xmm0.y + xmm1.y;
xmm0.z = xmm0.z + xmm1.z;

xmmO0.w = xmmO0.w + xmm1.w.

The four floating-point values stored in an SSE register can be extracted to
or loaded from memory or registers individually, but such operations tend to
be comparatively slow. Moving data between the x87 FPU registers and the
SSE registers is particularly bad, because the CPU has to wait for either the x87
or the SSE unit to spit out its pending calculations. This stalls out the CPU’s
entire instruction execution pipeline and results in a lot of wasted cycles. In a
nutshell, code that mixes regular mathematics with SSE mathematics should
be avoided like the plague.

To minimize the costs of going back and forth between memory, x87 FPU
registers, and SSE registers, most SIMD math libraries do their best to leave
data in the SSE registers for as long as possible. This means that even scalar
values are left in SSE registers, rather than being transferred out to float
variables. For example, a dot product between two vectors produces a scalar
result, but if we leave that result in an SSE register, it can be used later in other
vector calculations without incurring a transfer cost. Scalars are represented
by duplicating the single floating-point value across all four “slots” in an SSE
register. So to store the scalar s in an SSE register, we'd setz =y =z = w = s.

220

4. 3D Math for Games

4.72 The __ml128 Data Type

Using one of these magic SSE 128-bit values in C or C++ is quite easy. The Mi-
crosoft Visual Studio compiler provides a predefined data type called __m128.
This data type can be used to declare global variables, automatic variables
and even class and structure members. In many cases, variables of this type
will be stored in RAM. But when used in calculations, _ m128 values are
manipulated directly in the CPU’s SSE registers. In fact, declaring automatic
variables and function arguments to be of type __m128 often results in the
compiler storing those values directly in SSE registers, rather than keeping
them in RAM on the program stack.

4.7.2.1 Aside: gcc’s vector Types

The GNU C/C++ compiler gcc (used to compile code for the PS3, for example)
provides a whole family of 128-bit vector types that work similarly to___ m128
in Visual Studio. These are declared like regular C/C++ types but they are
preceded by the keyword vector. For example, a SIMD variable containing
four floats would be declared vector float. gcc also provides a means
of writing literal SIMD values into your source code. For example, you can
initialize a vector float with a value like this:

vector float v = (vector float) (-1.0f, 2.0f, 0.5f, 1.0f);
The corresponding Visual Studio code is a tad more clunky:

// use compiler intrinsic to load "literal" value
_ ml28 v = _mm_set_ps(-1.0f, 2.0f, 0.5f, 1.0f);

4.7.2.2 Alignment of __m128 Variables

When an ___m128 variable is stored in RAM, it is the programmer’s respon-
sibility to ensure that the variable is aligned to a 16-byte address boundary.
This means that the hexadecimal address of an ___m128 variable must always
end in the nibble 0x0. The compiler will automatically pad structures and
classes so that if the entire struct or class is aligned to a 16-byte boundary, all
of the __m128 data members within it will be properly aligned as well. If you
declare an automatic or global struct/class containing one or more __m128s,
the compiler will align the object for you. However, it is still your responsi-
bility to align dynamically allocated data structures (i.e., data allocated with
new or malloc ())—the compiler can’t help you there. See Section 5.2.1.3 for
information on aligned memory allocations.

47. Hardware-Accelerated SIMD Math

221

4.7.3 Coding with SSE Intrinsics

SSE mathematics can be done in raw assembly language, or via inline assem-
bly in C or C++. However, writing code like this is not only non-portable, it’s
also a big pain in the butt. To make life easier, modern compilers provide in-
trinsics—special commands that look and behave like regular C functions, but
are actually boiled down to inline assembly code by the compiler. Many in-
trinsics translate into a single assembly language instruction, although some
are macros that translate into a sequence of instructions.

In order to use the __m128 data type and SSE intrinsics, your .cpp file
must #include <xmmintrin.h>.

As an example, let’s take another look at the addps assembly language
instruction. This instruction can be invoked in C/C++ using the intrinsic
_mm_add_ps (). Here’s a comparison of what the code would look like with
and without the use of the intrinsic.

_ ml28 addWithAssembly (const _ ml28 a, const _ _ml28 b)

{
// NOTE: the function args a and b are already in
// xmmO and xmml thanks to the calling convention

__asm addps xmmO, xmml

// NOTE: a __ml28 return value is expected to be
// in xmmO thanks to the calling convention, so
// we don't need to do anything to return the

// result -- not even a return statement!

}

_ ml28 addWithIntrinsics(const _ ml28 a, const _ ml28 b)
{

return _mm_add_ps(a, b);

}

These two implementations look roughly equivalent at first glance. However,
notice how in the assembly language version, we have to use the __asm key-
word to invoke inline assembly instruction, and we rely on some very specific
knowledge of the compiler’s calling conventions in order to gain access to the
function arguments and the return value. This makes the function a bit more
difficult to write, and the resulting code is not at all portable.

On the other hand, the version using intrinsics involves no inline assembly,
and the SSE assembly language instruction looks just like a regular function
call. This version is much more intuitive and clear, and the source code is
more portable. Moreover, the use of intrinsics provides the compiler with

222

4. 3D Math for Games

additional “meta-knowledge” with which to optimize your code. Once you
bust out the __asm keyword, the compiler can’t make any assumptions and
hence its ability to apply optimizations is restricted.

If you'd like to experiment with these example functions, they can be in-
voked via the following test bed function. Notice the use of two new in-
trinsics: _mm_set_ps () which initializes an __m128 variable (i.e., an SSE
register) with four floating-point values, and _mm_load_ps (), which loads
values from an in-memory array of floats into an __m128 variable. Also
notice that we are forcing our four global f1oat arrays to be 16-byte aligned
viathe __declspec(align (16)) directive—if we omit these directives, the
program will either crash or its performance will be significantly reduced, de-
pending on the target hardware.

#include <xmmintrin.h>
// ... function definitions from above

void testSSE ()
{
__declspec(align(1l6)) float A[4];
__declspec(align(1l6)) float B[4]
= { 8.0f, 6.0f, 4.0f, 2.0f };
__declspec(align(1l6)) float C[4];
__declspec(align(1l6)) float D[4];

// set a = (1, 2, 3, 4) from literal values, and

// load b = (2, 4, 6, 8) from a floating-point array
// (just to illustrate the two ways of doing this)
// NOTE that B[] is written backwards because Intel
// is little-endian!

__ml28 a = _mm_set_ps(2.0f,-1.0f, 3.0f, 4.0f);
_ml28 b = _mm _load _ps (&B[0]);

// test the two functions
__ml28 ¢ = addWithAssembly(a, Db);
_ ml28 d = addWithIntrinsics(a, b);

// store the original values back so we can print them
_mm_store_ps (&A[0], a);
_mm_store_ps (&B[0], b);

// store results into float arrays so we can print them
_mm_store_ps (&C[0], c);
_mm_store_ps (&D[0], d);

47. Hardware-Accelerated SIMD Math

223

// inspect the results (NOTE: looks backwards because
// Intel is little-—-endian!)

printf("a = %g %g %g %g\n", A[0], A[1l], A[2], A[3]);
printf ("b = %g %g %g %g\n", B[0], B[1l], B[2], BI[3]);
printf("c = %g %g %g %g\n", C[0], C[l], C[2], CI[3]);
printf("d = %g %g %g %g\n", D[0], D[1], D[2], DI[3]);

}

4.73.1 Terminology in the SSE Documentation

We should pause here to make an observation about terminology. Microsoft’s
documentation uses the convention [w 2 y z] when referring to the names
of the individual 32-bit floats within an SSE register. In this book, we use the
convention [z y z w]|. Thisisjusta naming issue—it doesn’t matter what
you call the elements of an SSE register, as long as you're consistent about how
you interpret each element. Perhaps it is easiest to think of an SSE register r as
containing the elements [ro 1 72 73].

4.7.4 Vector-Matrix Multiplication with SSE

Let’s take a look at how vector-matrix multiplication might be implemented
using SSE instructions. We want to multiply the 1 x 4 vector v with the 4 x 4
matrix M to generate a result vector r.

r=vM
M1 My Mz My
Moy May Moz Moy
Ty T Tz Tw| = |Uz U Vz Vw
[y] [Y } Mgy Mss Mz Msy
My My Myz My

(veMi1 + vy Mo + v, Msq + vy Ma1) !
y
(ve M2 + vy Mag + v, Msa + v,y Myo)
y
Ve M3 + vy Moz + v, Msz + vy, Maz) |
y
(Ve Mia + vyMas + v; Msy + vy May)

The multiplication involves taking the dot product of the row vector v with
the columns of matrix M. So, to do this calculation using SSE instructions,
we might first try storing v in an SSE register (__m128) and storing each of
the columns of M in SSE registers as well. Then we could calculate all of the
products v M;; in parallel using only four mulps instructions, like this:

_ ml128 mulVectorMatrixAttemptl (
const _ ml28& v,
const _ ml28& McolO,
const _ ml28& Mcoll,

224

4. 3D Math for Games

const _ ml28& Mcol2,

const _ ml28& Mcol3)

const _ ml28 vMcolO = _mm mul_ps (v, McolO);
const _ ml28 vMcoll _mm_mul_ps (v, Mcoll
const _ ml28 vMcol2 _mm_mul_ps (v, Mcol2
const _ ml28 vMcol3 = _mm mul_ps (v, Mcol3
// ... then what?

’

4

}
The above code would yield the following intermediate results:

VMCOllZ[UIMH UyMgl v, M3 ’UwM41];

vMcol2 = [”L}leQ ’UyMQQ ”UZMgg ’UwM42])
vMcol3 = [1}le3 UyM23 UZM33 UwM43] ;
vMcol4d = [1}le4 UyM24 UZM34 ’UwM44] .

But the problem with doing it this way is that we now have to add “across
the registers” in order to generate the results we need. For example, r, =
(ve M1 + vy Moy + v, Ms1 + v,y Mar), so we’'d need to add the four components
of vMcoll together. Adding across a register like this is inefficient in SSE
(as it is in pretty much every SIMD architecture, including the PS3’s Altivec).
Moreover, it leaves the four components of the result in four separate SSE
registers, which would need to be combined into the single result vector r.
We can do better.

The “trick” here is to multiply with the rows of M, not its columns. That
way, we’ll have results that we can add in parallel, and the final sums will
end up in the four components of a single SSE register representing the output
vector r. However, we don’t want to multiply v as-is with the rows of M—we
want to multiply v, with all of row 1, v, with all of row 2, v, with all of row 3
and v, with all of row 4. To do this, we need to replicate a single component of
v, such as v,, across a register to yield a vector like [v, v, v, vs]. Thenwe
can multiply the replicated component vectors by the appropriate rows of M.

Thankfully there’s a powerful SSE instruction that can replicate values like
this. It is called shufps, and it’s wrapped by the intrinsic _mm_shuffle_
ps (). This beast is a bit complicated to understand, because it’s a general-
purpose instruction that can shuffle the components of an SSE register around
in semi-arbitrary ways. However, for our purposes we need only know that
the following macros replicate the z, y, z or w components of a vector across
an entire register:

#define SHUFFLE_PARAM(x, vy, z, w) \
((x) | ((y) << 2) | ((z) << 4) | ((w) << 6))

47. Hardware-Accelerated SIMD Math

225

#define _mm_replicate_x_ps(v)
(v),

_mm_shuffle_ps ((v),

#define _mm replicate_y_ ps(v)
(v),

_mm_shuffle_ps ((v),

#define _mm_replicate_z_ps(v)
(v),

_mm_shuffle_ps ((v),

#define _mm_replicate_w_ps (v)
(v),

_mm_shuffle_ps ((v),

\

\

\

\

SHUFFLE_PARAM (O,

SHUFFLE_PARAM(1,

SHUFFLE_PARAM(Z2,

SHUFFLE_PARAM (3,

0, 0, 0))
1, 1, 1))
2, 2, 2))
3, 3, 3))

Given these convenient macros, we can write our vector-matrix multipli-
cation function as follows:

__ml128 mulVectorMatrixAttempt2 (

const
const
const
const
const

const
const
const
const

const
const
const
const

_ ml28
result

result

return

__ml28&
__ml28&
__ ml28&
__ml28&
__ml28&

_ ml28
_ ml28
_ ml28
_ml28

_ ml28
_ ml28
_ ml28
_ ml28

result =

result

\&

MrowO,

Mrowl,

Mrow2,

Mrow3)

xxxXx = _mm_replicate_x_ps(v);
yyyy = _mm_replicate_y ps(v);
zzzz = _mm_replicate_z_ps(v);
Wwwww = _mm_replicate w_ps(v);
xMrow0O = _mm_mul_ps (xxxx, Mrow0);
yMrowl = _mm mul_ps(yyyy, Mrowl);
zMrow2 = _mm _mul_ps(zzzz, Mrow2);
wMrow3 = _mm mul_ps (wwww, Mrow3);

_mm_add_ps (xMrow0, yMrowl);

= _mm_add_ps(result, zMrow2);

= _mm_add _ps(result, wMrow3);

4

This code produces the following intermediate vectors:

veMiy v Mg ve M) ;
UyMQQ ’UyM23 ’UyM24] N
v:Msy v, Mss v, Mayl;
’UwM42 UwM43 ’UwM44] .

226

4. 3D Math for Games

Adding these four vectors in parallel produces our result r:

T
Ve M1y + vy Moy + v, M3y + vy My

()
(ve M2 + vy Mag + v, Msa + v, My2)
(vp Mg + vy Maz + v, Mss + vy My3)
(ve Mg + vy May + v, Msy + vy Mya)

r =

On some CPUs, the code shown above can be optimized even further by
using a rather handy multiply-and-add instruction, usually denoted madd. This
instruction multiplies its first two arguments and then adds the result to its
third argument. Unfortunately, SSE doesn’t support a madd instruction, but
we can fake it reasonably well with a macro like this:

#define _mm_madd _ps(a, b, c) \
_mm_add_ps(_mm mul_ps((a), (b)), (c))
_ ml28 mulVectorMatrixFinal (
const _ ml28 v,

const _ ml28 Mrow([4])

_ ml28 result;

result = _mm mul _ps (_mm_replicate_x_ps(v), Mrow[O0]);

result = _mm madd ps(_mm_replicate_y_ps(v), Mrow[l],
result);

result = _mm _madd_ps(_mm_replicate_z_ps(v), Mrow[2],
result);

result = _mm madd ps(_mm_replicate_w_ps(v), Mrow[3],
result);

return result;

We can of course perform 4 x 4 matrix-matrix multiplication using a similar
approach. When calculating the product P = AB, we treat each row of A as
a vector and multiply it with the rows of B as we did in mulvectorMatrix-
Final (), adding the results of each dot product to produce the correspond-
ing row in the product P. Check out http://msdn.microsoft.com/en-us/
library /t467de55(v=vs.90).aspx for a full listing of the SSE intrinsics for the
Microsoft Visual Studio compiler.

4.8. Random Number Generation

227

4.8 Random Number Generation

Random numbers are ubiquitous in game engines, so it behooves us to have
a brief look at the two most common random number generators, the linear
congruential generator and the Mersenne Twister. It’s important to realize that
random number generators don’t actually generate random numbers—they
merely produce a complex, but totally deterministic, predefined sequence of
values. For this reason, we call the sequences they produce pseudorandom.
What differentiates a good generator from a bad one is how long the sequence
of numbers is before it repeats (its period), and how well the sequences hold
up under various well-known randomness tests.

4.8.1 Linear Congruential Generators

Linear congruential generators are a very fast and simple way to generate a
sequence of pseudorandom numbers. Depending on the platform, this algo-
rithm is sometimes used in the standard C library’s rand () function. How-
ever, your mileage may vary, so don’t count on rand () being based on any
particular algorithm. If you want to be sure, you'll be better off implementing
your own random number generator.

The linear congruential algorithm is explained in detail in the book Nu-
merical Recipes in C, so Il won’t go into the details of it here.

What I will say is that this random number generator does not produce
particularly high-quality pseudorandom sequences. Given the same initial
seed value, the sequence is always exactly the same. The numbers produced
do not meet many of the criteria widely accepted as desirable, such as a long
period, low- and high-order bits that have similarly long periods, and absence
of sequential or spatial correlation between the generated values.

4.8.2 Mersenne Twister

The Mersenne Twister pseudorandom number generator algorithm was de-
signed specifically to improve upon the various problems of the linear congru-
ential algorithm. Wikipedia provides the following description of the benefits
of the algorithm:

1. It was designed to have a colossal period of 219937 — 1 (the creators of
the algorithm proved this property). In practice, there is little reason
to use larger ones, as most applications do not require 219937 unique
combinations (219937 a2 4.3 x 106901,

228

4. 3D Math for Games

2. It has a very high order of dimensional equidistribution. Note that this
means, by default, that there is negligible serial correlation between suc-
cessive values in the output sequence.

3. It passes numerous tests for statistical randomness, including the strin-
gent Diehard tests.

4. Ttis fast.

Various implementations of the Twister are available on the web, includ-
ing a particularly cool one that uses SIMD vector instructions for an extra
speed boost, called SFMT (SIMD-oriented fast Mersenne Twister). SEFMT can
be downloaded from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
SFMT /index.html.

4.8.3 Mother-of-All and Xorshift

In 1994, George Marsaglia, a computer scientist and mathematician best known
for developing the Diehard battery of tests of randomness (http://www.stat.
fsu.edu/pub/diehard), published a pseudorandom number generation algo-
rithm that is much simpler to implement and runs faster than the Mersenne
Twister algorithm. He claimed that it could produce a sequence of 32-bit pseu-
dorandom numbers with a period of non-repetition of 22°°. It passed all of the
Diehard tests and still stands today as one of the best pseudorandom number
generators for high-speed applications. He called his algorithm the Mother of
All Pseudorandom Number Generators, because it seemed to him to be the only
random number generator one would ever need.

Later, Marsaglia published another generator called Xorshift, which is be-
tween Mersenne and Mother-of-All in terms of randomness, but runs slightly
faster than Mother.

You can read about George Marsaglia at http://en.wikipedia.org/wiki/
George_Marsaglia, and about the Mother-of-All generator at ftp://ftp.forth.
org/pub/C/mother.c and at http://www.agner.org/random. You can down-
load a PDF of George’s paper on Xorshift at http://www.jstatsoft.org/v08/
i14/paper.

Part |l
Low-Level
Engine Systems

This page intentionally left blank

5
Engine Support Systems

very game engine requires some low-level support systems that manage

mundane but crucial tasks, such as starting up and shutting down the en-
gine, configuring engine and game features, managing the engine’s memory
usage, handling access to file system(s), providing access to the wide range
of heterogeneous asset types used by the game (meshes, textures, animations,
audio, etc.), and providing debugging tools for use by the game development
team. This chapter will focus on the lowest-level support systems found in
most game engines. In the chapters that follow, we will explore some of the
larger core systems, including resource management, human interface devices
and in-game debugging tools.

5.1 Subsystem Start-Up and Shut-Down

A game engine is a complex piece of software consisting of many interacting
subsystems. When the engine first starts up, each subsystem must be config-
ured and initialized in a specific order. Interdependencies between subsys-
tems implicitly define the order in which they must be started—i.e., if sub-
system B depends on subsystem A, then A will need to be started up before B
can be initialized. Shut-down typically occurs in the reverse order, so B would
shut down first, followed by A.

231

232

5. Engine Support Systems

5.1.1 C++ Static Initialization Order (or Lack Thereof)

Since the programming language used in most modern game engines is C++,
we should briefly consider whether C++’s native start-up and shut-down se-
mantics can be leveraged in order to start up and shut down our engine’s sub-
systems. In C++, global and static objects are constructed before the program’s
entry point (main (), or WinMain () under Windows) is called. However,
these constructors are called in a totally unpredictable order. The destructors
of global and static class instances are called after main () (or WinMain ())
returns, and once again they are called in an unpredictable order. Clearly this
behavior is not desirable for initializing and shutting down the subsystems
of a game engine, or indeed any software system that has interdependencies
between its global objects.

This is somewhat unfortunate, because a common design pattern for im-
plementing major subsystems such as the ones that make up a game engine is
to define a singleton class (often called a manager) for each subsystem. If C++
gave us more control over the order in which global and static class instances
were constructed and destroyed, we could define our singleton instances as
globals, without the need for dynamic memory allocation. For example, we
could write:

class RenderManager

{

public:
RenderManager ()
{
// start up the manager...
}
~RenderManager ()
{
// shut down the manager...
}
//

}i

// singleton instance
static RenderManager gRenderManager;

Alas, with no way to directly control construction and destruction order, this
approach won’t work.

5.1.1.1 Construct On Demand

There is one C++ “trick” we can leverage here. A static variable that is de-
clared within a function will not be constructed before main () is called, but

5.1. Subsystem Start-Up and Shut-Down 233

rather on the first invocation of that function. So if our global singleton is
function-static, we can control the order of construction for our global single-
tons.

class RenderManager
{
public:
// Get the one and only instance.
static RenderManageré& get ()
{
// This function-static will be constructed on the
// first call to this function.
static RenderManager sSingleton;
return sSingleton;

RenderManager ()

{
// Start up other managers we depend on, by
// calling their get () functions first...
VideoManager: :get () ;
TextureManager: :get () ;

// Now start up the render manager.

/7

~RenderManager ()

{
// Shut down the manager.

//
}i

You'll find that many software engineering textbooks suggest this design
or a variant that involves dynamic allocation of the singleton as shown below.

static RenderManageré& get ()
{
static RenderManager* gpSingleton = NULL;
if (gpSingleton == NULL)
{
gpSingleton = new RenderManager;
}
ASSERT (gpSingleton) ;
return xgpSingleton;

234

5. Engine Support Systems

Unfortunately, this still gives us no way to control destruction order. It
is possible that C++ will destroy one of the managers upon which the
RenderManager depends for its shut-down procedure, prior to the
RenderManager’s destructor being called. In addition, it’s difficult to predict
exactly when the RenderManager singleton will be constructed, because the
construction will happen on the first call to RenderManager: :get () —and
who knows when that might be? Moreover, the programmers using the class
may not be expecting an innocuous-looking get () function to do something
expensive, like allocating and initializing a heavyweight singleton. This is an
unpredictable and dangerous design. Therefore, we are prompted to resort to
a more direct approach that gives us greater control.

5.1.2 A Simple Approach That Works

Let’s presume that we want to stick with the idea of singleton managers for
our subsystems. In this case, the simplest “brute-force” approach is to define
explicit start-up and shut-down functions for each singleton manager class.
These functions take the place of the constructor and destructor, and in fact
we should arrange for the constructor and destructor to do absolutely nothing.
That way, the start-up and shut-down functions can be explicitly called in the
required order from within main () (or from some overarching singleton object
that manages the engine as a whole). For example:

class RenderManager
{
public:
RenderManager ()
{
// do nothing
}

~RenderManager ()
{

// do nothing
}

void startUp()
{

// start up the manager...
}

void shutDown ()
{

// shut down the manager...
}

5.1. Subsystem Start-Up and Shut-Down

235

//
}i

class PhysicsManager

class AnimationManager

class MemoryManager

class FileSystemManager

!/

RenderManager
PhysicsManager
AnimationManager
TextureManager
VideoManager
MemoryManager
FileSystemManager

!/

{ /% similar... %/ };
{ /x similar... %/ };
{ /* similar... =/ };
{ /% similar... %/ };
gRenderManager;
gPhysicsManager;
gAnimationManager;
gTextureManager;
gVideoManager;
gMemoryManager;
gFileSystemManager;

int main(int argc, const charx argv)

{

// Start up engine systems in the correct order.

gMemoryManager.startUp () ;
gFileSystemManager.startUp () ;
gVideoManager.startUp() ;
gTextureManager.startUp () ;
gRenderManager.startUp () ;
gAnimationManager.startUp();
gPhysicsManager.startUp();

/7

// Run the game.

gSimulationManager.run() ;

// Shut everything down, in reverse order.

/7

gPhysicsManager.shutDown () ;
gAnimationManager.shutDown () ;
gRenderManager.shutDown () ;
gFileSystemManager.shutDown () ;
gMemoryManager .shutDown () ;

return 0;

236

5. Engine Support Systems

There are “more elegant” ways to accomplish this. For example, you could
have each manager register itself into a global priority queue and then walk
this queue to start up all the managers in the proper order. You could define
the manger-to-manager dependency graph by having each manager explicitly
list the other managers upon which it depends and then write some code to
calculate the optimal start-up order given their interdependencies. You could
use the construct-on-demand approach outlined above. In my experience, the
brute-force approach always wins out, because of the following:

¢ It’s simple and easy to implement.

e It’s explicit. You can see and understand the start-up order immediately
by just looking at the code.

¢ It’seasy to debug and maintain. If something isn’t starting early enough,
or is starting too early, you can just move one line of code.

One minor disadvantage to the brute-force manual start-up and shut-down
method is that you might accidentally shut things down in an order that isn't
strictly the reverse of the start-up order. But I wouldn’t lose any sleep over it.
As long as you can start up and shut down your engine’s subsystems success-
fully, you're golden.

5.1.3 Some Examples from Real Engines

Let’s take a brief look at some examples of engine start-up and shut-down
taken from real game engines.

5.1.3.1 OGRE

OGRE is by its authors” admission a rendering engine, not a game engine
per se. But by necessity it provides many of the low-level features found in
full-fledged game engines, including a simple and elegant start-up and shut-
down mechanism. Everything in OGRE is controlled by the singleton object
Ogre: :Root. It contains pointers to every other subsystem in OGRE and man-
ages their creation and destruction. This makes it very easy for a programmer
to start up OGRE—just new an instance of Ogre: : Root and you're done.
Here are a few excerpts from the OGRE source code so we can see what
it’s doing:
OgreRoot.h

class _OgreExport Root : public Singleton<Root>

{
// <some code omitted...>

// Singletons
LogManager* mLogManager;

5.1. Subsystem Start-Up and Shut-Down 237

}i

ControllerManagerx mControllerManager;
SceneManagerEnumerator* mSceneManagerEnum;
SceneManager* mCurrentSceneManager;
DynLibManager* mDynLibManager;
ArchiveManager* mArchiveManager;
MaterialManagerx mMaterialManager;
MeshManager* mMeshManager;
ParticleSystemManagerx mParticleManager;
SkeletonManager* mSkeletonManager;
OverlayElementFactory* mPanelFactory;
OverlayElementFactory* mBorderPanelFactory;
OverlayElementFactory* mTextAreaFactory;
OverlayManager* mOverlayManager;
FontManager mFontManager;

ArchiveFactory xmZipArchiveFactory;
ArchiveFactory xmFileSystemArchiveFactory;
ResourceGroupManager* mResourceGroupManager;
ResourceBackgroundQueuex mResourceBackgroundQueue;
ShadowTextureManager* mShadowTextureManager;

// ete.

OgreRoot.cpp

Root::Root (const String& pluginFileName,

const String& configFileName,
const String& logFileName)
mLogManager (0) ,
mCurrentFrame (0),
mFrameSmoothingTime (0.0f),
mNextMovableObjectTypeFlag(l),
mIsInitialised(false)

// superclass will do singleton checking
String msg;

// Init
mActiveRenderer = 0;
mVersion
= StringConverter::toString (OGRE_VERSION_MAJOR)

non

StringConverter::toString (OGRE_VERSION_MINOR)
" n
StringConverter::toString (OGRE_VERSION_PATCH)
OGRE_VERSION_SUFFIX + "™ "

+ "(" + OGRE_VERSION_NAME + ")";
mConfigFileName = configFileName;

+ + + + +

// create log manager and default log file if there
// is no log manager yet

238

5. Engine Support Systems

if (LogManager: :getSingletonPtr () == 0)

{
mLogManager = new LogManager () ;
mLogManager—->createlog (logFileName, true, true);

// dynamic library manager
mDynLibManager = new DynLibManager () ;
mArchiveManager = new ArchiveManager();

// ResourceGroupManager
mResourceGroupManager = new ResourceGroupManager () ;

// ResourceBackgroundQueue
mResourceBackgroundQueue
= new ResourceBackgroundQueue () ;

// and so on...

}

OGRE provides a templated Ogre: :Singleton base class from which all
of its singleton (manager) classes derive. If you look at its implementation,
you'll see that Ogre: : Singleton does not use deferred construction but in-
stead relies on Ogre: : Root to explicitly new each singleton. As we discussed
above, this is done to ensure that the singletons are created and destroyed in
a well-defined order.

5.1.3.2 Naughty Dog’s Uncharted Series and The Last of Us

The Uncharted / The Last of Us engine created by Naughty Dog, Inc. uses a sim-
ilar explicit technique for starting up its subsystems. You'll notice by looking
at the following code that engine start-up is not always a simple sequence
of allocating singleton instances. A wide range of operating system services,
third-party libraries and so on must all be started up during engine initial-
ization. Also, dynamic memory allocation is avoided wherever possible, so
many of the singletons are statically allocated objects (e.g., g_fileSystemn,
g_languageMgr, etc.) It’s not always pretty, but it gets the job done.

Err BigInit ()
{

init_exception_handler();

U8+ pPhysicsHeap = new(kAllocGlobal, kAlignlé6)
U8 [ALLOCATION_GLOBAL_PHYS_HEAP];

PhysicsAllocatorInit (pPhysicsHeap,
ALLOCATION_GLOBAL_PHYS_HEAP) ;

g_textDb.Init();

5.2. Memory Management

239

g_textSubDb.Init ();
g_spuMgr.Init();

g_drawScript.InitPlatform();
PlatformUpdate () ;

thread_t init_thr;
thread_create (&init_thr, threadInit, 0, 30,
64%«1024, 0, "Init");

char masterConfigFileName[256];

snprintf (masterConfigFileName,
sizeof (masterConfigFileName),
MASTER_CFG_PATH) ;

Err err = ReadConfigFromFile (
masterConfigFileName) ;
if (err.Failed())
{
MsgErr ("Config file not found (%s).\n",
masterConfigFileName) ;

memset (&g_discInfo, 0, sizeof (BootDiscInfo));
int errl = GetBootDiscInfo(&g_discInfo);

Msg ("GetBootDiscInfo () : O0x%x\n", errl);

if (errl == BOOTDISCINFO_RET_OK)

{
printf ("titleId : [%$s]\n",
g_discInfo.titleld);
printf ("parentallevel : [%d]\n",
g_discInfo.parentallevel);

g_fileSystem.Init (g_gameInfo.m_onDisc);

g_languageMgr.Init ();
if (g_shouldQuit) return Err::kOK;

// and so on...

5.2 Memory Management

As game developers, we are always trying to make our code run more quickly.
The performance of any piece of software is dictated not only by the algo-
rithms it employs, or the efficiency with which those algorithms are coded,

240 5. Engine Support Systems

but also by how the program utilizes memory (RAM). Memory affects perfor-
mance in two ways:

1. Dynamic memory allocation via malloc () or C++’s global operator
new is a very slow operation. We can improve the performance of our
code by either avoiding dynamic allocation altogether or by making use
of custom memory allocators that greatly reduce allocation costs.

2. On modern CPUs, the performance of a piece of software is often dom-
inated by its memory access patterns. As we’ll see, data that is located in
small, contiguous blocks of memory can be operated on much more effi-
ciently by the CPU than if that same data were to be spread out across
a wide range of memory addresses. Even the most efficient algorithm,
coded with the utmost care, can be brought to its knees if the data upon
which it operates is not laid out efficiently in memory.

In this section, we’ll learn how to optimize our code’s memory utilization
along these two axes.

5.2.1 Optimizing Dynamic Memory Allocation

Dynamic memory allocation viamalloc () and free () or C++’s global new
and delete operators—also known as heap allocation—is typically very slow.
The high cost can be attributed to two main factors. First, a heap allocator
is a general-purpose facility, so it must be written to handle any allocation
size, from one byte to one gigabyte. This requires a lot of management over-
head, making the malloc () and free () functions inherently slow. Sec-
ond, on most operating systems a call to malloc () or free () must first
context-switch from user mode into kernel mode, process the request and then
context-switch back to the program. These context switches can be extraordi-
narily expensive. One rule of thumb often followed in game development is:

Keep heap allocations to a minimum, and never allocate from the
heap within a tight loop.

Of course, no game engine can entirely avoid dynamic memory allocation,
so most game engines implement one or more custom allocators. A custom
allocator can have better performance characteristics than the operating sys-
tem’s heap allocator for two reasons. First, a custom allocator can satisfy re-
quests from a preallocated memory block (itself allocated using malloc () or
new, or declared as a global variable). This allows it to run in user mode and

5.2. Memory Management

241

entirely avoid the cost of context-switching into the operating system. Second,
by making various assumptions about its usage patterns, a custom allocator
can be much more efficient than a general-purpose heap allocator.

In the following sections, we’ll take a look at some common kinds of cus-
tom allocators. For additional information on this topic, see Christian Gyr-
ling’s excellent blog post, http://www.swedishcoding.com/2008/08/31/
are-we-out-of-memory.

5.2.1.1 Stack-Based Allocators

Many games allocate memory in a stack-like fashion. Whenever a new game
level is loaded, memory is allocated for it. Once the level has been loaded,
little or no dynamic memory allocation takes place. At the conclusion of
the level, its data is unloaded and all of its memory can be freed. It makes
a lot of sense to use a stack-like data structure for these kinds of memory
allocations.

A stack allocator is very easy to implement. We simply allocate a large con-
tiguous block of memory using malloc () or global new, or by declaring a
global array of bytes (in which case the memory is effectively allocated out of
the executable’s BSS segment). A pointer to the top of the stack is maintained.
All memory addresses below this pointer are considered to be in use, and all
addresses above it are considered to be free. The top pointer is initialized to
the lowest memory address in the stack. Each allocation request simply moves
the pointer up by the requested number of bytes. The most recently allocated
block can be freed by simply moving the top pointer back down by the size of
the block.

It is important to realize that with a stack allocator, memory cannot be
freed in an arbitrary order. All frees must be performed in an order oppo-
site to that in which they were allocated. One simple way to enforce these
restrictions is to disallow individual blocks from being freed at all. Instead,
we can provide a function that rolls the stack top back to a previously marked
location, thereby freeing all blocks between the current top and the roll-back
point.

It’s important to always roll the top pointer back to a point that lies at the
boundary between two allocated blocks, because otherwise new allocations
would overwrite the tail end of the top-most block. To ensure that this is
done properly, a stack allocator often provides a function that returns a marker
representing the current top of the stack. The roll-back function then takes one
of these markers as its argument. This is depicted in Figure 5.1. The interface
of a stack allocator often looks something like this.

242 5. Engine Support Systems

Obtain marker after allocating blocks A and B.

T

Allocate additional blocks C, D and E.

A B C D E

T

Free back to marker.

T

Figure 5.1. Stack allocation and freeing back to a marker.

class StackAllocator

{

public:
// Stack marker: Represents the current top of the
// stack. You can only roll back to a marker, not to
// arbitrary locations within the stack.
typedef U32 Marker;

// Constructs a stack allocator with the given total
// size.
explicit StackAllocator (U32 stackSize_bytes);

// Allocates a new block of the given size from stack
// top.
voidx alloc (U32 size_bytes);

// Returns a marker to the current stack top.
Marker getMarker();

// Rolls the stack back to a previous marker.
void freeToMarker (Marker marker) ;

// Clears the entire stack (rolls the stack back to
// zero).
void clear () ;

5.2. Memory Management

243

private:
/o
bi

Double-Ended Stack Allocators

A single memory block can actually contain two stack allocators—one that
allocates up from the bottom of the block and one that allocates down from
the top of the block. A double-ended stack allocator is useful because it uses
memory more efficiently by allowing a trade-off to occur between the memory
usage of the bottom stack and the memory usage of the top stack. In some sit-
uations, both stacks may use roughly the same amount of memory and meet
in the middle of the block. In other situations, one of the two stacks may eat
up a lot more memory than the other stack, but all allocation requests can still
be satisfied as long as the total amount of memory requested is not larger than
the block shared by the two stacks. This is depicted in Figure 5.2.

In Midway’s Hydro Thunder arcade game, all memory allocations are made
from a single large block of memory managed by a double-ended stack allo-
cator. The bottom stack is used for loading and unloading levels (race tracks),
while the top stack is used for temporary memory blocks that are allocated
and freed every frame. This allocation scheme worked extremely well and
ensured that Hydro Thunder never suffered from memory fragmentation prob-
lems (see Section 5.2.1.4). Steve Ranck, Hydro Thunder’s lead engineer, de-
scribes this allocation technique in depth in [6, Section 1.9].

Lower Upper

Figure 5.2. A double-ended stack allocator.

5.2.1.2 Pool Allocators

It’s quite common in game engine programming (and software engineering in
general) to allocate lots of small blocks of memory, each of which are the same
size. For example, we might want to allocate and free matrices, or iterators, or
links in a linked list, or renderable mesh instances. For this type of memory
allocation pattern, a pool allocator is often the perfect choice.

A pool allocator works by preallocating a large block of memory whose
size is an exact multiple of the size of the elements that will be allocated. For
example, a pool of 4 x4 matrices would be an exact multiple of 64 bytes—that’s
16 elements per matrix times four (for 32-bit f1oats) or eight bytes (for 64-bit

244

5. Engine Support Systems

doubles) per element. Each element within the pool is added to a linked list
of free elements; when the pool is first initialized, the free list contains all of the
elements. Whenever an allocation request is made, we simply grab the next
free element off the free list and return it. When an element is freed, we simply
tack it back onto the free list. Both allocations and frees are O(1) operations,
since each involves only a couple of pointer manipulations, no matter how
many elements are currently free. (The notation O(1) is an example of “big
O” notation. In this case it means that the execution time of both allocations
and frees are roughly constant and do not depend on things like the number
of elements currently in the pool. See Section 5.3.3 for an explanation of “big
O” notation.)

The linked list of free elements can be a singly-linked list, meaning that we
need a single pointer (four bytes on 32-bit machines or eight bytes on 64-bit
machines) for each free element. Where should we obtain the memory for all
these pointers? Certainly they could be stored in a separate preallocated mem-
ory block, occupying (sizeof (void*) * numElementsInPool) bytes.
However, this is unduly wasteful. The key is to realize that the memory
blocks residing on the free list are, by definition, free memory blocks. So why
not store each free list “next” pointer within the free block itself? This little
“trick” works as long as elementSize >= sizeof (void«). We don’t waste
any memory, because our free list pointers all reside inside the free memory
blocks—in memory that wasn’t being used for anything anyway!

If each element is smaller than a pointer, then we can use pool element in-
dices instead of pointers to implement our linked list. For example, if our pool
contains 16-bit integers, then we can use 16-bit indices as the “next pointers”
in our linked list. This works as long as the pool doesn’t contain more than
216 = 65,536 elements.

5.2.13 Aligned Allocations

As we saw in Section 3.2.5.1, every variable and data object has an alignment
requirement. An 8-bit integer variable can be aligned to any address, but a 32-
bit integer or floating-point variable must be 4-byte aligned, meaning its ad-
dress can only end in the nibbles 0x0, 0x4, 0x8 or 0xC. A 128-bit SIMD vector
value generally has a 16-byte alignment requirement, meaning that its mem-
ory address can end only in the nibble 0x0. On the PS3, memory blocks that
are to be transferred to an SPU via the direct memory access (DMA) controller
should be 128-byte aligned for maximum DMA throughput, meaning they can
only end in the bytes 0x00 or 0x80.
All memory allocators must be capable of returning aligned memory blocks.

This is relatively straightforward to implement. We simply allocate a little bit

5.2. Memory Management

245

more memory than was actually requested, adjust the address of the memory
block upward slightly so that it is aligned properly, and then return the ad-
justed address. Because we allocated a bit more memory than was requested,
the returned block will still be large enough, even with the slight upward ad-
justment.

In most implementations, the number of additional bytes allocated is equal
to the alignment. For example, if the request is for a 16-byte aligned memory
block, we would allocate 16 additional bytes. This allows for the worst-case
address adjustment of 15 bytes, plus one extra byte so that we can use the
same calculations even if the original block is already aligned. This simplifies
and speeds up the code at the expense of one wasted byte per allocation. It’s
also important because, as we’ll see below, we’ll need those extra bytes to
store some additional information that will be used when the block is freed.

We determine the amount by which the block’s address must be adjusted
by masking off the least-significant bits of the original block’s memory ad-
dress, subtracting this from the desired alignment, and using the result as the
adjustment offset. The alignment should always be a power of two (4-byte and
16-byte alignments are typical), so to generate the mask we simply subtract
one from the alignment. For example, if the request is for a 16-byte aligned
block, then the mask would be (16—1) = 15 = 0x0000000F. Taking the bitwise
AND of this mask and any misaligned address will yield the amount by which
the address is misaligned. For example, if the originally allocated block’s ad-
dress is 0x50341233, ANDing this address with the mask 0x0000000F yields
0x00000003, so the address is misaligned by three bytes. To align the address,
we add (alignment — misalignment) = (16 — 3) = 13 = 0xD bytes to it. The
final aligned address is therefore 0x50341233 4 0xD = 0x50341240.

Here’s one possible implementation of an aligned memory allocator:

// Aligned allocation function. IMPORTANT: 'alignment'
// must be a power of 2 (typically 4 or 16).
voidx allocateAligned(size_t size_bytes, size_t alignment)
{
ASSERT ((alignment & (alignment - 1)) == 0); // pwr of 2

// Determine total amount of memory to allocate.
size_t expandedSize_bytes = size_bytes + alignment;

// Allocate unaligned block & convert address to uintptr_t.

uintptr_t rawAddress = reinterpret_cast<uintptr_t>(
allocateUnaligned (expandedSize_bytes));

// Calculate the adjustment by masking off the lower bits

// of the address, to determine how "misaligned" it is.

246 5. Engine Support Systems

size_t mask = (alignment - 1);
uintptr_t misalignment = (rawAddress & mask);
ptrdiff_t adjustment = alignment - misalignment;

// Calculate the adjusted address, return as pointer.
uintptr_t alignedAddress = rawAddress + adjustment;
return static_cast<void*> (pAlignedMemn) ;

When this block is later freed, the code will pass us the adjusted address,
not the original address we allocated. How, then, do we actually free the
memory? We need some way to convert an adjusted address back into the
original, possibly misaligned address.

To accomplish this, we simply store some meta-information in those extra
bytes we allocated in order to align the data in the first place. The smallest ad-
justment we might make is one byte. That’s enough room to store the number
of bytes by which the address was adjusted (since it will never be more than
256). We always store this information in the byte immediately preceding
the adjusted address (no matter how many bytes of adjustment we actually
added), so that it is trivial to find it again, given the adjusted address. Here’s
how the modified allocateAligned () function would look. The process
of allocating and freeing aligned blocks is illustrated in Figure 5.3.

// Aligned allocation function. IMPORTANT: 'alignment'
// must be a power of 2 (typically 4 or 16).
voidx allocateAligned(size_t size_bytes, size_t alignment)
{
ASSERT (alignment >= 1);
ASSERT (alignment <= 128);
ASSERT ((alignment & (alignment - 1)) == 0); // pwr of 2

// Determine total amount of memory to allocate.
size_t expandedSize_bytes = size_bytes + alignment;

// Allocate unaligned block & convert address to uintptr_t.
uintptr_t rawAddress = reinterpret_cast<uintptr_t>(
allocateUnaligned (expandedSize_bytes));

// Calculate the adjustment by masking off the lower bits
// of the address, to determine how "misaligned" it is.
size_t mask = (alignment - 1);

uintptr_t misalignment = (rawAddress & mask);

ptrdiff_t adjustment = alignment - misalignment;

// Calculate the adjusted address.
uintptr_t alignedAddress = rawAddress + adjustment;

5.2. Memory Management

247

}

// Store the adjustment in the byte immediately

// preceding the adjusted address.

ASSERT (adjustment < 256);

U8* pAlignedMem = reinterpret_cast<U8x>(alignedAddress);
pAlignedMem[-1] = static_cast<U8> (adjustment);

return static_cast<voidx*> (pAlignedMem) ;

And here’s how the corresponding freeAligned () function would be im-
plemented.

void freeAligned (void* pMem)

{

const U8x pAlignedMem
= reinterpret_cast<const U8x*> (pMem) ;

uintptr_t alignedAddress

= reinterpret_cast<uintptr_t> (pMem) ;
ptrdiff_t adjustment

= static_cast<ptrdiff_ t> (pAlignedMem[-1]) ;

uintptr_t rawAddress = alignedAddress - adjustment;
void+x pRawMem = reinterpret_cast<voidx> (rawAddress);

freeUnaligned (pRawMemn) ;

0x21AC
0x21A8 Returned address
(aligned)
0x21A4 //
-
0x21A0 Adjustment
0x219C 44— stored here for

retrieval on free

Allocated address
(misaligned)

Figure 53. Aligned memory allocation with a 16-byte alignment requirement. The difference
between the allocated memory address and the adjusted (aligned) address is stored in the byte
immediately preceding the adjusted address, so that it may be retrieved during free.

5.2.1.4 Single-Frame and Double-Buffered Memory Allocators

Virtually all game engines allocate at least some temporary data during the
game loop. This data is either discarded at the end of each iteration of the loop

248

5. Engine Support Systems

or used on the next frame and then discarded. This allocation pattern is so
common that many engines support single-frame and double-buffered allocators.

Single-Frame Allocators

A single-frame allocator is implemented by reserving a block of memory and
managing it with a simple stack allocator as described above. At the begin-
ning of each frame, the stack’s “top” pointer is cleared to the bottom of the
memory block. Allocations made during the frame grow toward the top of
the block. Rinse and repeat.

StackAllocator g_singleFrameAllocator;

// Main Game Loop
while (true)

{

// Clear the single-frame allocator's buffer every
// frame.
g_singleFrameAllocator.clear();

/7

// Allocate from the single-frame buffer. We never
// need to free this data! Just be sure to use it
// only this frame.

voidx p = g_singleFrameAllocator.alloc (nBytes);

/7

One of the primary benefits of a single-frame allocator is that allocated
memory needn’t ever be freed—we can rely on the fact that the allocator will
be cleared at the start of every frame. Single-frame allocators are also blind-
ingly fast. The one big negative is that using a single-frame allocator requires
a reasonable level of discipline on the part of the programmer. You need to
realize that a memory block allocated out of the single-frame buffer will only
be valid during the current frame. Programmers must never cache a pointer to
a single-frame memory block across the frame boundary!

Double-Buffered Allocators

A double-buffered allocator allows a block of memory allocated on frame 4 to
be used on frame (i 4 1). To accomplish this, we create two single-frame stack
allocators of equal size and then ping-pong between them every frame.

5.2. Memory Management

249

class DoubleBufferedAllocator

{

U32 m_curStack;
StackAllocator m_stack[2];

public:

}i

/7

void swapBuffers ()

{

m_curStack = (U32) !m_curStack;

void clearCurrentBuffer ()
{

m_stack[m_curStack] .clear();

void+ alloc (U32 nBytes)
{

return m_stack[m_curStack].alloc (nBytes);

/7

DoubleBufferedAllocator g_doubleBufAllocator;

// Main Game Loop
while (true)

{

// Clear the single—-frame allocator every frame as

// before.
g_singleFrameAllocator.clear();

// Swap the active and inactive buffers of the double-
// buffered allocator.
g_doubleBufAllocator.swapBuffers();

// Now clear the newly active buffer, leaving last

// frame's buffer intact.
g_doubleBufAllocator.clearCurrentBuffer () ;

//

250

5. Engine Support Systems

// Allocate out of the current buffer, without

// disturbing last frame's data. Only use this data
// this frame or next frame. Again, this memory never
// needs to be freed.

voidx p = g_doubleBufAllocator.alloc (nBytes);

/7

This kind of allocator is extremely useful for caching the results of asyn-
chronous processing on a multicore game console like the Xbox 360, Xbox One,
PlayStation 3 or PlayStation 4. On frame ¢, we can kick off an asynchronous
job on one of the PS3’s SPUs, for example, handing it the address of a desti-
nation buffer that has been allocated from our double-buffered allocator. The
job runs and produces its results some time before the end of frame 3, storing
them into the buffer we provided. On frame (i + 1), the buffers are swapped.
The results of the job are now in the inactive buffer, so they will not be over-
written by any double-buffered allocations that might be made during this
frame. As long as we use the results of the job before frame (i + 2), our data
won’t be overwritten.

5.2.2 Memory Fragmentation

Another problem with dynamic heap allocations is that memory can become
fragmented over time. When a program first runs, its heap memory is entirely
free. When a block is allocated, a contiguous region of heap memory of the
appropriate size is marked as “in use,” and the remainder of the heap remains
free. When a block is freed, it is marked as such, and adjacent free blocks are
merged into a single, larger free block. Over time, as allocations and deallo-
cations of various sizes occur in random order, the heap memory begins to
look like a patchwork of free and used blocks. We can think of the free regions
as “holes” in the fabric of used memory. When the number of holes becomes
large, and/or the holes are all relatively small, we say the memory has become
fragmented. This is illustrated in Figure 5.4.

The problem with memory fragmentation is that allocations may fail even
when there are enough free bytes to satisfy the request. The crux of the prob-
lem is that allocated memory blocks must always be contiguous. For example,
in order to satisfy a request of 128 KiB, there must exist a free “hole” that
is 128 KiB or larger. If there are two holes, each of which is 64 KiB in size,
then enough bytes are available but the allocation fails because they are not
contiguous bytes.

5.2. Memory Management

251

After one allocation...

used

After eight allocations...

After eight allocations and three frees...

After n allocations and m frees...

Figure 5.4. Memory fragmentation.

Memory fragmentation is not as much of a problem on operating sys-
tems that support virtual memory. A virtual memory system maps discontigu-
ous blocks of physical memory known as pages into a virtual address space, in
which the pages appear to the application to be contiguous. Stale pages can
be swapped to the hard disk when physical memory is in short supply and
reloaded from disk when they are needed. For a detailed discussion of how
virtual memory works, see http://en.wikipedia.org/wiki/Virtual_memory.
Most embedded systems cannot afford to implement a virtual memory sys-
tem. While some modern consoles do technically support it, most console
game engines still do not make use of virtual memory due to the inherent
performance overhead.

5.2.2.1 Avoiding Fragmentation with Stack and Pool Allocators

The detrimental effects of memory fragmentation can be avoided by using
stack and/or pool allocators.

IEN EREIEN NN

252

5. Engine Support Systems

Allocated blocks, always contiguous

Single free block, always contiguous

allocation

eallocation

y

N

Figure 5.5. A stack allocator is free from fragmentation problems.

Allocated and free blocks all the same size

Figure 5.6. A pool allocator is not degraded by fragmentation.

* A stack allocator is impervious to fragmentation because allocations are
always contiguous, and blocks must be freed in an order opposite to that
in which they were allocated. This is illustrated in Figure 5.5.

* A pool allocator is also free from fragmentation problems. Pools do be-
come fragmented, but the fragmentation never causes premature out-of-
memory conditions as it does in a general-purpose heap. Pool allocation
requests can never fail due to a lack of a large enough contiguous free
block, because all of the blocks are exactly the same size. This is shown
in Figure 5.6.

5.2.2.2 Defragmentation and Relocation

When differently sized objects are being allocated and freed in a random or-
der, neither a stack-based allocator nor a pool-based allocator can be used. In
such cases, fragmentation can be avoided by periodically defragmenting the
heap. Defragmentation involves coalescing all of the free “holes” in the heap
by shifting allocated blocks from higher memory addresses down to lower
addresses (thereby shifting the holes up to higher addresses). One simple
algorithm is to search for the first “hole” and then take the allocated block
immediately above the hole and shift it down to the start of the hole. This has
the effect of “bubbling up” the hole to a higher memory address. If this pro-
cess is repeated, eventually all the allocated blocks will occupy a contiguous
region of memory at the low end of the heap’s address space, and all the holes
will have bubbled up into one big hole at the high end of the heap. This is
illustrated in Figure 5.7.

5.2. Memory Management

253

Figure 5.7. Defragmentation by shifting allocated blocks to lower addresses.

The shifting of memory blocks described above is not particularly tricky
to implement. What is tricky is accounting for the fact that we’re moving
allocated blocks of memory around. If anyone has a pointer into one of these
allocated blocks, then moving the block will invalidate the pointer.

The solution to this problem is to patch any and all pointers into a shifted
memory block so that they point to the correct new address after the shift. This
procedure is known as pointer relocation. Unfortunately, there is no general-
purpose way to find all the pointers that point into a particular region of mem-
ory. So if we are going to support memory defragmentation in our game en-
gine, programmers must either carefully keep track of all the pointers man-
ually so they can be relocated, or pointers must be abandoned in favor of
something inherently more amenable to relocation, such as smart pointers or
handles.

A smart pointer is a small class that contains a pointer and acts like a
pointer for most intents and purposes. But because a smart pointer is a class,
it can be coded to handle memory relocation properly. One approach is to
arrange for all smart pointers to add themselves to a global linked list. When-
ever a block of memory is shifted within the heap, the linked list of all smart
pointers can be scanned, and each pointer that points into the shifted block of
memory can be adjusted appropriately.

A handle is usually implemented as an index into a non-relocatable ta-
ble, which itself contains the pointers. When an allocated block is shifted in
memory, the handle table can be scanned and all relevant pointers found and
updated automatically. Because the handles are just indices into the pointer
table, their values never change no matter how the memory blocks are shifted,
so the objects that use the handles are never affected by memory relocation.

Another problem with relocation arises when certain memory blocks can-
not be relocated. For example, if you are using a third-party library that does

254

5. Engine Support Systems

not use smart pointers or handles, it’s possible that any pointers into its data
structures will not be relocatable. The best way around this problem is usu-
ally to arrange for the library in question to allocate its memory from a special
buffer outside of the relocatable memory area. The other option is to simply
accept that some blocks will not be relocatable. If the number and size of the
non-relocatable blocks are both small, a relocation system will still perform
quite well.

It is interesting to note that all of Naughty Dog’s engines have supported
defragmentation. Handles are used wherever possible to avoid the need to
relocate pointers. However, in some cases raw pointers cannot be avoided.
These pointers are carefully tracked and relocated manually whenever a mem-
ory block is shifted due to defragmentation. A few of Naughty Dog’s game
object classes are not relocatable for various reasons. However, as mentioned
above, this doesn’t pose any practical problems, because the number of such
objects is always very small, and their sizes are tiny when compared to the
overall size of the relocatable memory area.

Amortizing Defragmentation Costs

Defragmentation can be a slow operation because it involves copying memory
blocks. However, we needn’t fully defragment the heap all at once. Instead,
the cost can be amortized over many frames. We can allow up to IV allocated
blocks to be shifted each frame, for some small value of N like 8 or 16. If
our game is running at 30 frames per second, then each frame lasts 1/30 of a
second (33 ms). So, the heap can usually be completely defragmented in less
than one second without having any noticeable effect on the game’s frame
rate. As long as allocations and deallocations aren’t happening at a faster rate
than the defragmentation shifts, the heap will remain mostly defragmented at
all times.

This approach is only valid when the size of each block is relatively small,
so that the time required to move a single block does not exceed the time
allotted to relocation each frame. If very large blocks need to be relocated,
we can often break them up into two or more subblocks, each of which can
be relocated independently. This hasn’t proved to be a problem in Naughty
Dog’s engine, because relocation is only used for dynamic game objects, and
they are never larger than a few kibibytes—and usually much smaller.

5.3 Containers

Game programmers employ a wide variety of collection-oriented data struc-
tures, also known as containers or collections. The job of a container is always

53. Containers

255

the same—to house and manage zero or more data elements; however, the de-
tails of how they do this vary greatly, and each type of container has its pros
and cons. Common container data types include, but are certainly not limited
to, the following.

Array. An ordered, contiguous collection of elements accessed by in-
dex. The length of the array is usually statically defined at compile time.
It may be multidimensional. C and C++ support these natively (e.g.,
int al5]).

Dynamic array. An array whose length can change dynamically at run-
time (e.g., STL's std: :vector).

Linked list. An ordered collection of elements not stored contiguously
in memory but rather linked to one another via pointers (e.g., STL’s
std::1list).

Stack. A container that supports the last-in-first-out (LIFO) model
for adding and removing elements, also known as push/pop (e.g.,
std: :stack).

Queue. A container that supports the first-in-first-out (FIFO) model for
adding and removing elements (e.g., std: : queue).

Deque. A double-ended queue—supports efficient insertion and removal
at both ends of the array (e.g., std: : deque).

Tree. A container in which elements are grouped hierarchically. Each
element (node) has zero or one parent and zero or more children. A tree
is a special case of a DAG (see below).

Binary search tree (BST). A tree in which each node has at most two chil-
dren, with an order property to keep the nodes sorted by some well-
defined criteria. There are various kinds of binary search trees, includ-
ing red-black trees, splay trees, AVL trees, etc.

Binary heap. A binary tree that maintains itself in sorted order, much like
a binary search tree, via two rules: the shape property, which specifies
that the tree must be fully filled and that the last row of the tree is filled
from left to right; and the heap property, which states that every node
is, by some user-defined criterion, “greater than” or “equal to” all of its
children.

Priority queue. A container that permits elements to be added in any
order and then removed in an order defined by some property of the
elements themselves (i.e., their priority). A priority queue is typically
implemented as a heap (e.g., std: :priority_queue), but other im-
plementations are possible. A priority queue is a bit like a list that stays

256

5. Engine Support Systems

531

sorted at all times, except that a priority queue only supports retrieval of
the highest-priority element, and it is rarely implemented as a list under
the hood.

Dictionary. A table of key-value pairs. A value can be “looked up” ef-
ficiently given the corresponding key. A dictionary is also known as a
map or hash table, although technically a hash table is just one possible
implementation of a dictionary (e.g., std: :map, std: :hash_map).
Set. A container that guarantees that all elements are unique accord-
ing to some criteria. A set acts like a dictionary with only keys, but no
values.

Graph. A collection of nodes connected to one another by unidirectional
or bidirectional pathways in an arbitrary pattern.

Directed acyclic graph (DAG). A collection of nodes with unidirectional
(i.e., directed) interconnections, with no cycles (i.e., there is no nonempty
path that starts and ends on the same node).

Container Operations

Game engines that make use of container classes inevitably make use of vari-
ous commonplace algorithms as well. Some examples include:

Insert. Add a new element to the container. The new element might be
placed at the beginning of the list, or the end, or in some other location;
or the container might not have a notion of ordering at all.

Remove. Remove an element from the container; this may require a find
operation (see below). However, if an iterator is available that refers
to the desired element, it may be more efficient to remove the element
using the iterator.

Sequential access (iteration). Accessing each element of the container in
some “natural” predefined order.

Random access. Accessing elements in the container in an arbitrary order.
Find. Search a container for an element that meets a given criterion.
There are all sorts of variants on the find operation, including finding
in reverse, finding multiple elements, etc. In addition, different types of
data structures and different situations call for different algorithms (see
http://en.wikipedia.org/wiki/Search_algorithm).

Sort. Sort the contents of a container according to some given criteria.
There are many different sorting algorithms, including bubble sort, se-
lection sort, insertion sort, quicksort and so on. (See http://en.wikipedia.
org/wiki/Sorting_algorithm for details.)

53. Containers

257

5.3.2 lterators

An iterator is a little class that “knows” how to efficiently visit the elements
in a particular kind of container. It acts like an array index or pointer—it
refers to one element in the container at a time, it can be advanced to the next
element, and it provides some sort of mechanism for testing whether or not
all elements in the container have been visited. As an example, the first of
the following two code snippets iterates over a C-style array using a pointer,
while the second iterates over an STL linked list using almost identical syntax.

void processArray (int container[], int numElements)
{

intx pBegin = &container[0];

int+ pEnd = &container[numElements];

for (intx p = pBegin; p != pEnd; pt+t)
{

int element = «*p;

// process element...

void processList (std::1list<int>& container)

{
std::1list<int>::iterator pBegin = container.begin();
std::list<int>::iterator pEnd = container.end();
std::1list<inf>::iterator p;

for (p = pBegin; p != pEnd; p+t+)
{

int element = xp;

// process element...

The key benefits to using an iterator over attempting to access the con-
tainer’s elements directly are as follows:

¢ Direct access would break the container class’ encapsulation. An iter-
ator, on the other hand, is typically a friend of the container class, and
as such it can iterate efficiently without exposing any implementation
details to the outside world. (In fact, most good container classes hide
their internal details and cannot be iterated over without an iterator.)

¢ An iterator can simplify the process of iterating. Most iterators act like
array indices or pointers, so a simple loop can be written in which the

258

5. Engine Support Systems

iterator is incremented and compared against a terminating condition—
even when the underlying data structure is arbitrarily complex. For ex-
ample, an iterator can make an in-order depth-first tree traversal look
no more complex than a simple array iteration.

5.3.2.1 Preincrement versus Postincrement

Notice in the above example that we are using C++’s postincrement operator,
p++, rather than the preincrement operator, ++p. This is a subtle but some-
times important optimization. The preincrement operator increments the con-
tents of the variable before its (now modified) value is used in the expression.
The postincrement operator increments the contents of the variable after it has
been used. This means that writing ++p introduces a data dependency into your
code—the CPU must wait for the increment operation to be completed before
its value can be used in the expression. On a deeply pipelined CPU, this intro-
duces a stall. On the other hand, with p++ there is no data dependency. The
value of the variable can be used immediately, and the increment operation
can happen later or in parallel with its use. Either way, no stall is introduced
into the pipeline.

Of course, within the “update” expression of a for loop (for (init_expr;
test_expr; update_expr) { ... }),thereshould be no difference between
pre- and postincrement. This is because any good compiler will recognize that
the value of the variable isn’t used in update_expr. But in cases where the
value is used, postincrement is superior because it doesn’t introduce a stall
in the CPU’s pipeline. Therefore, it’s good to get in the habit of always using
postincrement, unless you absolutely need the semantics of preincrement.

5.3.3 Algorithmic Complexity

The choice of which container type to use for a given application depends
upon the performance and memory characteristics of the container being con-
sidered. For each container type, we can determine the theoretical perfor-
mance of common operations such as insertion, removal, find and sort.

We usually indicate the amount of time 7" that an operation is expected to
take as a function of the number of elements » in the container:

T = f(n).

Rather tha